

PRELIMINARY

CY62126V

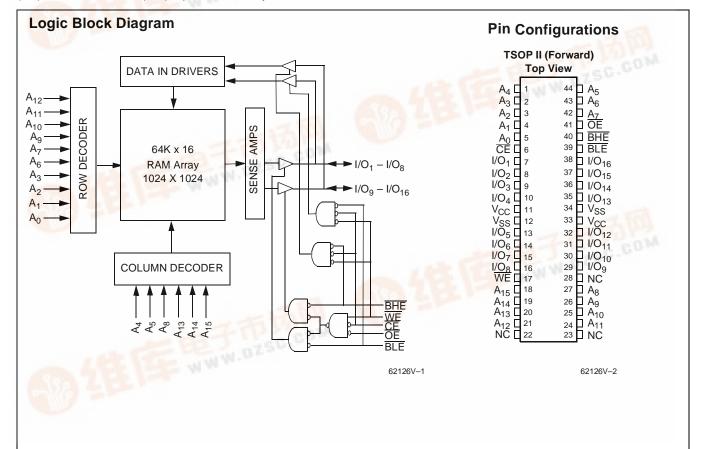
64K x 16 Static RAM

Features

- 2.7V-3.6V operation
- CMOS for optimum speed/power
- Low active power (70 ns)
 - 198 mW (max.) (55 mA)
- Low standby power (70 ns, LL version)
 - $-54 \mu W (max.) (15 \mu A)$
- Automatic power-down when deselected
- Independent control of Upper and Lower Bytes
- Available in 44-pin TSOP II (forward)

Functional Description

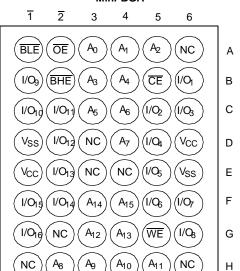
The CY62126V is a high-performance CMOS static RAM organized as 65,536 words by 16 bits. This device has an automatic power-down feature that significantly reduces power consumption by 99% when deselected. The device enters power-down mode when $\overline{\text{CE}}$ is HIGH.


Writing to the device is accomplished by taking chip enable (\overline{CE}) and write enable (\overline{WE}) inputs LOW. If byte low enable

(BLE) is LOW, then data from I/O pins (I/O $_1$ through I/O $_8$), is written into the location specified on the address pins (A $_0$ through A $_{15}$). If byte high enable (BHE) is LOW, then data from I/O pins (I/O $_9$ through I/O $_{16}$) is written into the location specified on the address pins (A $_0$ through A $_{15}$).

Reading from the device is accomplished by taking chip enable (\overline{CE}) and output enable (\overline{OE}) LOW while forcing the write enable (\overline{WE}) HIGH. If byte low enable (\overline{BLE}) is LOW, then data from the memory location specified by the address pins will appear on I/O₁ to I/O₈. If byte high enable (\overline{BHE}) is LOW, then data from memory will appear on I/O₉ to I/O₁₆. See the truth table at the back of this datasheet for a complete description of read and write modes.

The input/output pins (I/O₁ through I/O₁₆) are placed in a high-impedance state when the device is deselected $\overline{\text{CE}}$ HIGH), the outputs are disabled ($\overline{\text{OE}}$ HIGH), the $\overline{\text{BHE}}$ and $\overline{\text{BLE}}$ are disabled ($\overline{\text{BHE}}$, $\overline{\text{BLE}}$ HIGH), or during a write operation ($\overline{\text{CE}}$ LOW, and $\overline{\text{WE}}$ LOW).


The CY62126V is available in standard 44-pin TSOP Type II (forward pinout) and mini-BGA packages.

Pin Configurations (continued)

Mini-BGA

62126V-3

Selection Guide

			62126V-55	62126V-70	Units
Maximum Access Time			55	70	ns
Maximum Operating Current			55	55	mA
Maximum CMOS Standby Current			0.3	0.3	mA
		L	50	50	μА
	Com'l	LL	15	15	μΑ
	Ind'I	LL	30	30	μΑ

Shaded areas contain advance information.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied –55°C to +125°C Supply Voltage on $\rm V_{CC}$ to Relative $\rm GND^{[1]}$ –0.5V to +4.6V DC Voltage Applied to Outputs in High Z State $^{[1]}$ -0.5V to V $_{\rm CC}$ +0.5V DC Input Voltage^[1].....-0.5V to V_{CC} +0.5V

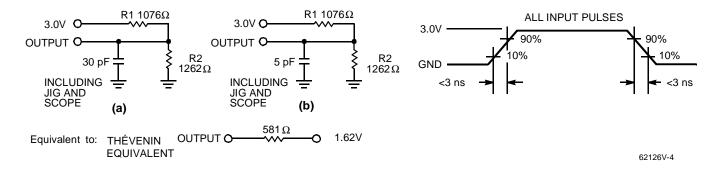
Notes:

- 1. V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns. 2. T_A is the "instant on" case temperature.

Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	. >2001V
Latch-Up Current	>200 mA

Operating Range

Range	Ambient Temperature ^[2]	v _{cc}
Commercial	0°C to +70°C	2.7V-3.6V
Industrial	−40°C to +85°C	


Electrical Characteristics Over the Operating Range

Parameter	Description	nditions		Min. Typ. ^[3]		Max.	Unit	
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -1$	2.2			V		
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 2.1	mA				0.4	V
V _{IH}	Input HIGH Voltage				2.0		V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage ^[1]				-0.3		0.4	V
I _{IX}	Input Load Current	$GND \leq V_I \leq V_{CC}$			-1		+1	μΑ
I _{OZ}	Output Leakage Current	$\begin{array}{l} \text{GND} \leq \text{V}_{\text{I}} \leq \text{V}_{\text{CC}}, \\ \text{Output Disabled} \end{array}$	-1		+1	μΑ		
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max.$ $I_{OUT} = 0 \text{ mÅ},$ $f = f_{MAX} = 1/t_{RC}$					55	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\begin{aligned} &\text{Max. V}_{CC}, \overline{CE} \geq V_{IH} \\ &V_{IN} \geq V_{IH} \text{ or } \\ &V_{IN} \leq V_{IL}, f = f_{MAX} \end{aligned}$					2	mA
I _{SB2}	Automatic CE	Max. V _{CC} ,				0.5	0.3	mA
	Power-Down Current —CMOS Inputs	$\overline{CE} \ge V_{CC} - 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$,		L		0.5	50	μΑ
	- Cine Cinputo	or $V_{IN} \le 0.3V$, f=0	Com'l	LL		0.5	15	μΑ
			Ind'I	LL		0.5	30	μΑ

Capacitance^[4]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	9	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.3V$	9	pF

AC Test Loads and Waveforms

Notes:

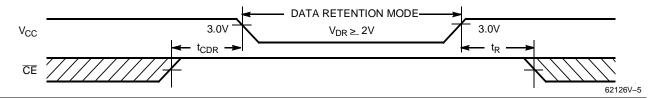
- Typical specifications are the mean values measured over a large sample size across normal production process variations and are taken at nominal conditions (T_A = 25°C, V_{CC}=3.0V). Parameters are guaranteed by design and characterization, and not 100% tested.
- Tested initially and after any design or process changes that may affect these parameters.

Switching Characteristics^[5] Over the Operating Range

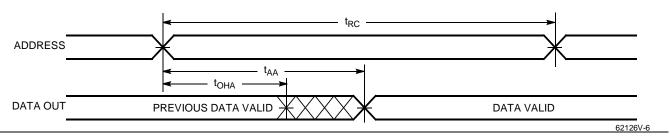
		62120	6V-55	62126V-70		
Parameter	Description	Min.	Max.	Min.	Max.	Unit
READ CYCLE		1	•		1	II.
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	10		10		ns
t _{ACE}	CE LOW to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		35	ns
t _{LZOE}	OE LOW to Low Z ^[7]	5		5		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		20		25	ns
t _{LZCE}	CE LOW to Low Z ^[7]	10		10		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]		20		25	ns
t _{PU}	CE LOW to Power-Up	0		0		ns
t _{PD}	CE HIGH to Power-Down		55		70	ns
t _{DBE}	Byte Enable to Data Valid		25		35	ns
t _{LZBE}	Byte Enable to LOW Z ^[7]	5		5		ns
t _{HZBE}	Byte Disable to HIGH Z ^[6,7]		20		25	ns
WRITE CYCLI	E [8]					
t _{WC}	Write Cycle Time	55		70		ns
t _{SCE}	CE LOW to Write End	45		60		ns
t _{AW}	Address Set-Up to Write End	45		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	40		50		ns
t _{SD}	Data Set-Up to Write End	25		30		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[7]	5		5		ns
t _{HZWE}	WE LOW to High Z ^[6,7]		25		25	ns
t _{BW}	Byte Enable to End of Write	45		60		ns

Shaded areas contain advance information.

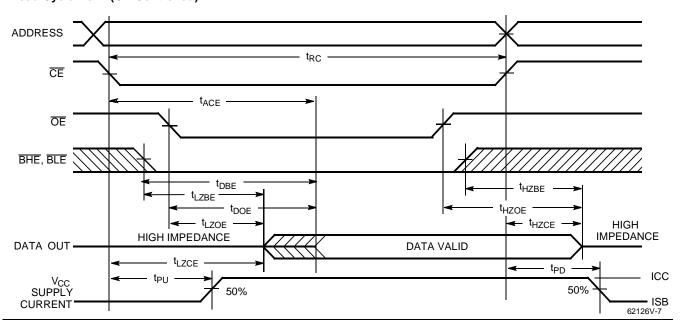
Note:


- 5. Test conditions assume signal transition time of 5ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30pF load capacitance.
- 6. t_{HZOE}, t_{HZOE}, t_{HZOE}, and t_{HZBE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
 7. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZOE}, t_{HZOE} is less than t_{LZOE}, t_{HZWE} is less than t_{LZWE}, and t_{HZBE} is less than t_{LZBE}, for any given device.
- 8. The internal write time of the memory is defined by the overlap of $\overline{\text{CE}}$ LOW and $\overline{\text{WE}}$ LOW. $\overline{\text{CE}}$ and $\overline{\text{WE}}$ must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write. Refer to truth table for further conditions from $\overline{\text{BHE}}$ and $\overline{\text{BLE}}$.

Data Retention Characteristics (Over the Operating Range for "L" and "LL" version only)


Parameter	Description			Conditions ^[9]	Min.	Тур	Max.	Unit
V_{DR}	V _{CC} for Data Retention				2.0		3.6	V
I _{CCDR}	Data Retention Current		L	$V_{CC}=V_{DR}=3.0V$		0.5	50	μΑ
		Com'l	LL	$\overline{CE} \ge V_{CC} - 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$ or, $V_{IN} \le 0.3V$		0.5	15	μΑ
		Ind'l	LL	$V_{IN} \le 0.3V$		0.5	30	μΑ
t _{CDR} ^[4]	Chip Deselect to Data Retention Time				0			ns
t _R	Operation Recovery Time				t _{RC}			ns

Data Retention Waveform

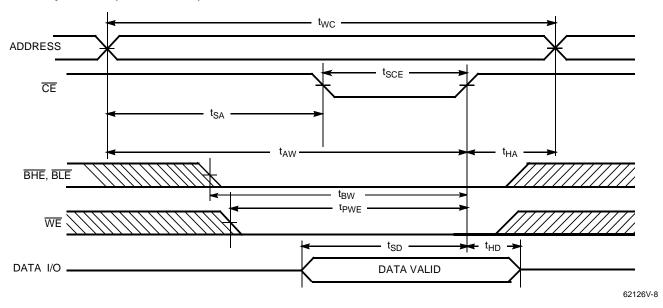


Switching Waveforms

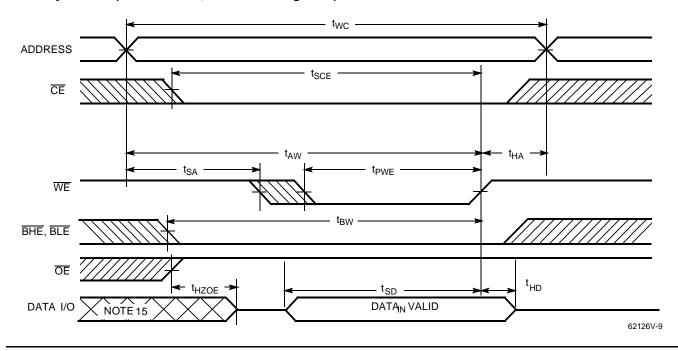
Read Cycle No.1^[10,11]

Read Cycle No. 2 (OE Controlled)[11,12,13]

Notes:


- No input may exceed V_{CC} + 0.3V. <u>Device</u> is continuously selected. <u>OE</u>, <u>CE</u>, <u>BHE</u>, <u>BLE</u> = V_{IL} . <u>WE</u> is HIGH for read cycle.

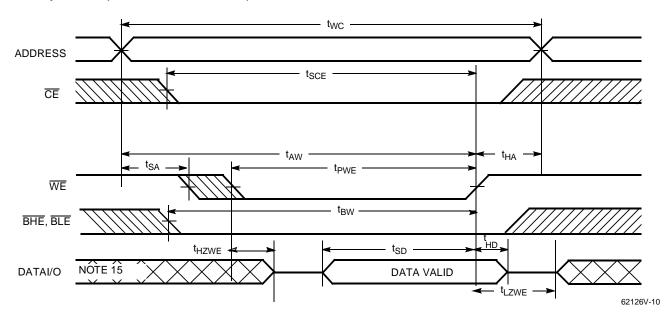
- 12. Address valid prior to or coincident with <u>CE transition LOW</u>.
 13. Data I/O is high impedance if <u>OE = V_{IH} or BHE</u> and <u>BLE = V_{IH}.</u>



Switching Waveforms (continued)

Write Cycle No. 1 ($\overline{\text{CE}}$ Controlled)[13,14]

Write Cycle No. 2 (WE Controlled, OE HIGH During Write)[13,14]



 ^{14.} If CE, BHE, or BLE go HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.
 15. During this period the I/Os are in the output state and input signals should not be applied.

Switching Waveforms (continued)

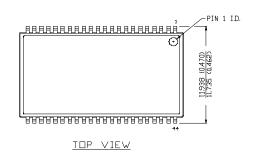
Write Cycle No.3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)[13,14]

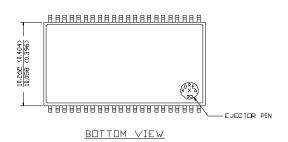
Truth Table

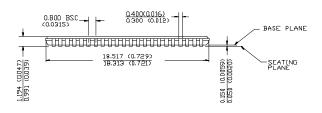
CE	OE	WE	BLE	BHE	I/O ₁ –I/O ₈	I/O ₉ -I/O ₁₆	Mode	Power
Н	Х	Χ	Χ	Χ	High Z	High Z	Power Down	Standby (I _{SB})
L	L	Н	L	L	Data Out	Data Out	Read All bits	Active (I _{CC})
L	L	Н	L	Н	Data Out	High Z	Read Lower bits only	Active (I _{CC})
L	L	Н	Н	L	High Z	Data Out	Read Upper bits only	Active (I _{CC})
L	Х	L	L	L	Data In	Data In	Write All bits	Active (I _{CC})
L	Х	L	L	Н	Data In	High Z	Write Lower bits only	Active (I _{CC})
L	Х	L	Н	L	High Z	Data In	Write Upper bits only	Active (I _{CC})
L	Н	Н	Χ	Χ	High Z	High Z	Selected, Outputs Disabled	Active (I _{CC})

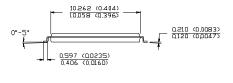
Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
55	CY62126V-55ZC	Z44	44-Lead TSOP II	Commercial
	CY62126VL-55ZC	Z44	44-Lead TSOP II	
	CY62126VLL-55ZC	Z44	44-Lead TSOP II	
	CY62126VLL-55ZI	Z44	44-Lead TSOP II	Industrial
55	CY62126V-55BAC	BA48	48-ball mini Ball Grid Array (7.00 mm x 7.00 mm)	Commercial
	CY62126VL-55BAC	BA48	48-ball mini Ball Grid Array (7.00 mm x 7.00 mm)	
	CY62126VLL-55BAC	BA48	48-ball mini Ball Grid Array (7.00 mm x 7.00 mm)	
	CY62126VLL-55BAI	BA48	48-ball mini Ball Grid Array (7.00 mm x 7.00 mm)	Industrial
70	CY62126V-70ZC	Z44	44-Lead TSOP II	Commercial
	CY62126VL-70ZC	Z44	44-Lead TSOP II	
	CY62126VLL-70ZC	Z44	44-Lead TSOP II	
	CY62126VLL-70ZI	Z44	44-Lead TSOP II	Industrial
70	CY62126V-70BAC	BA48	48-ball mini Ball Grid Array (7.00 mm x 7.00 mm)	Commercial
	CY62126VL-70BAC	BA48	48-ball mini Ball Grid Array (7.00 mm x 7.00 mm)	
	CY62126VLL-70BAC	BA48	48-ball mini Ball Grid Array (7.00 mm x 7.00 mm)	
	CY62126VLL-70BAI	BA48	48-ball mini Ball Grid Array (7.00 mm x 7.00 mm)	Industrial

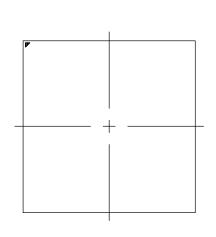

Shaded area contains advanced information.

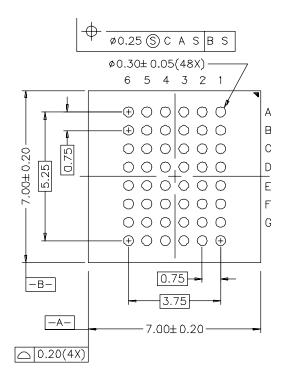

Document #: 38-00584

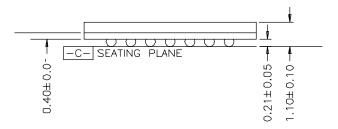

Package Diagrams


44-Pin TSOP II Z44

DIMENSION (N MM (INCH)
NAX
NIN
LEAD COPLANARITY 0.004 (NCHES.







Package Diagrams (continued)

48-Ball (7.00 mm x 7.00 mm) Mini Ball Grid Array BA48

