

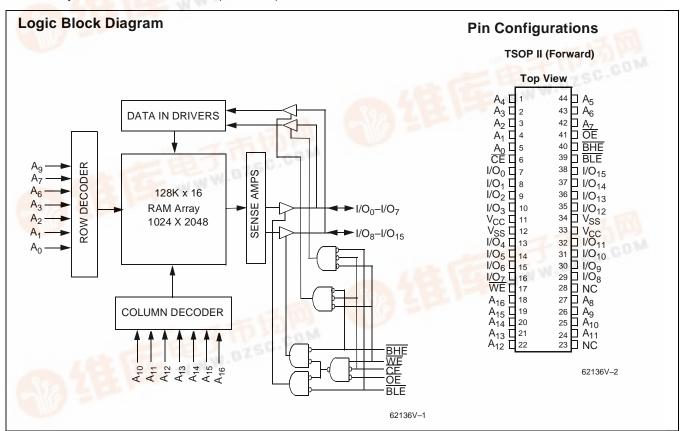
CY62136V MoBL™ CY62136V18 MoBL2™

128K x 16 Static RAM

Features

- · Low voltage range:
 - CY62136V18: 1.65V-1.95V
 - CY62136V: 2.7V–3.6V
- · Ultra-low active, standby power
- Easy memory expansion with CE and OE features
- TTL-compatible inputs and outputs
- Automatic power-down when deselected
- CMOS for optimum speed/power

Functional Description

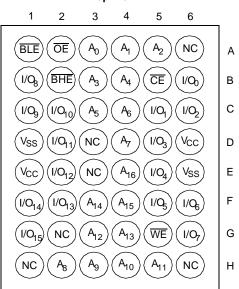

The CY62136V and CY62136V18 are high-performance CMOS static RAMs organized as 131,072 words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL™) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The device can also be put into standby mode when deselected (CE HIGH). The in-

put/output pins (I/O $_0$ through I/O $_{15}$) are placed in a high-impedance state when: deselected (CE HIGH), outputs are disabled (OE HIGH), BHE and BLE are disabled (BHE, BLE HIGH), or during a write operation (CE LOW, and WE LOW).

Writing to the device is accomplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (\overline{BLE}) is LOW, then data from I/O pins $(I/O_0$ through I/O₇), is written into the location specified on the address pins $(A_0$ through A_{16}). If Byte High Enable (\overline{BHE}) is LOW, then data from I/O pins $(I/O_8$ through $I/O_{15})$ is written into the location specified on the address pins $(A_0$ through $A_{16})$.

Reading from the device is accomplished by taking Chip Enable $(\overline{\text{CE}})$ and Output Enable $(\overline{\text{OE}})$ LOW while forcing the Write Enable $(\overline{\text{WE}})$ HIGH. If Byte Low Enable $(\overline{\text{BLE}})$ is LOW, then data from the memory location specified by the address pins will appear on I/O₀ to I/O₇. If Byte High Enable $(\overline{\text{BHE}})$ is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the Truth Table at the back of this data sheet for a complete description of read and write modes.

The CY62136V and CY62136V18 are available in 48-ball FBGA and standard 44-pin TSOP Type II (forward pinout) packaging.


More Battery Life and MoBL are trademarks of Cypress Semiconductor Corporation.

Pin Configuration (continued)

FBGA Top View

62136V-3

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied-55°C to +125°C

Supply Voltage to Ground Potential......-0.5V to +4.6V

DC Voltage Applied to Outputs in High Z State ^[1]	–0.5V to V _{CC} + 0.5V
DC Input Voltage ^[1]	
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

Device	Range	Ambient Temperature	V _{CC}
CY62136V18	Industrial	−40°C to +85°C	1.65V to 1.95V
CY62136V	Industrial	−40°C to +85°C	2.7V to 3.6V

Product Portfolio

						Power Di	ssipation (Ir	ndustrial)
	V _{CC} Range				Operating (I _{CC})		Standby (I _{SB2})	
Product	V _{CC(min)}	V _{CC(typ)} ^[2]	V _{CC(max)}	Speed	Typ. ^[2]	Maximum	Typ. ^[2]	Maximum
CY62136V	2.7V	3.0V	3.6V	70 ns	7 mA	15 mA	1 μΑ	15 µA
CY62136V18	1.65	1.80	1.95	70 ns	3 mA	7 mA	1 μΑ	15 µA

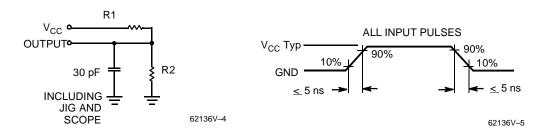
Shaded areas contain preliminary information.

- 1. $V_{IL}(min) = -2.0V$ for pulse durations less than 20 ns.
- 2. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC} Typ, T_A = 25°C.

Electrical Characteristics Over the Operating Range

					CY62136\	/		
Parameter	Description	Test Condi	Min.	Typ. ^[2]	Max.	Unit		
V _{OH}	Output HIGH Voltage	$I_{OH} = -1.0 \text{ mA}$	$V_{CC} = 2.7V$	2.4			V	
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	$V_{CC} = 2.7V$			0.4	V	
V _{IH}	Input HIGH Voltage		$V_{CC} = 3.6V$	2.2		V _{CC} + 0.5V	V	
V _{IL}	Input LOW Voltage		$V_{CC} = 2.7V$	-0.5		0.8	V	
I _{IX}	Input Load Current	$GND \le V_1 \le V_{CC}$	$GND \le V_1 \le V_{CC}$			+1	μA	
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, Or	GND ≤ V _O ≤ V _{CC} , Output Disabled			+1	μA	
Icc	V _{CC} Operating Supply Current	$I_{OUT} = 0 \text{ mA},$ $f = f_{MAX} = 1/t_{RC},$ CMOS levels	V _{CC} = 3.6V		7	15	mA	
		I _{OUT} = 0 mA, f = 1 MHz, CMOS Levels			1	2	mA	
I _{SB1}	Automatic CE Power-Down Current— CMOS Inputs	$\label{eq:constraints} \begin{split} \overline{CE} & \geq V_{CC} - 0.3V, \\ V_{IN} & \geq V_{CC} - 0.3V \text{ or } \\ V_{IN} & \leq 0.3V, \text{ f = f}_{MAX} \end{split}$				100	μΑ	
I _{SB2}	Automatic CE Power-Down Current— CMOS Inputs		V _{CC} = LL 3.6V		1	15	μA	

					CY62136V1	18	
Parameter	Description	Test Condit	ions	Min.	Typ. ^[2]	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -0.1 \text{ mA}$	$V_{CC} = 1.65V$	1.5			V
V _{OL}	Output LOW Voltage	I _{OL} = 0.1 mA	$V_{CC} = 1.65V$			0.2	V
V _{IH}	Input HIGH Voltage		$V_{CC} = 1.95V$	1.4		V _{CC} + 0.3V	V
V _{IL}	Input LOW Voltage		$V_{CC} = 1.65V$	-0.5		0.4	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$	-1	<u>+</u> 1	+1	μΑ	
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, Ou	-1	+1	+1	μΑ	
I _{CC}	V _{CC} Operating Supply Current	$I_{OUT} = 0 \text{ mA},$ $f = f_{MAX} = 1/t_{RC},$ CMOS levels	V _{CC} = 1.95V		3	7	mA
		I _{OUT} = 0 mA, f = 1 MHz, CMOS Levels			1	2	mA
I _{SB1}	Automatic CE Power-Down Current— CMOS Inputs	$\overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.3\text{V}, \\ \text{V}_{\text{IN}} \ge \text{V}_{\text{CC}} - 0.3\text{V or} \\ \text{V}_{\text{IN}} \le 0.3\text{V}, \text{f} = \text{f}_{\text{MAX}}$				100	μΑ
I _{SB2}	Automatic CE Power-Down Current— CMOS Inputs	$\overline{CE} \ge V_{CC}-0.3V$ $V_{IN} \ge V_{CC}-0.3V$ or $V_{IN} \le 0.3V$, $f = 0$	V _{CC} = LL 1.95V		1	15	μА

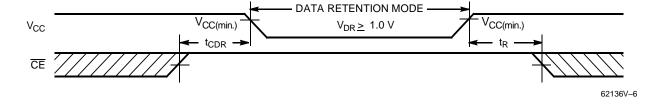

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	8	pF

^{3.} Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

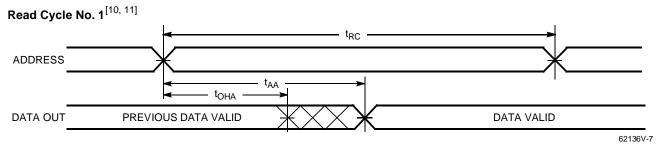

Parameters	3.0V	1.8V	UNIT
R1	1105	15294	Ohms
R2	1550	11300	Ohms
R _{TH}	645	6500	Ohms
V_{TH}	1.75V	0.85V	Volts

Shaded areas contain preliminary information.

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions ^[5]		Min.	Typ . ^[2]	Max.	Unit
V _{DR}	V _{CC} for Data Retention (CY62136V18)			1.0		1.95	V
V _{DR}	V _{CC} for Data Retention (CY62136V)			1.0		3.6	V
I _{CCDR}	Data Retention Current	$\begin{split} &\frac{V_{CC}=1.0V}{CE \geq V_{CC}-0.3V,} \\ &V_{IN} \geq V_{CC}-0.3V \text{ or } \\ &V_{IN} \leq 0.3V \\ &\text{No input may exceed} \\ &V_{CC}+0.3V \end{split}$	LL		0.1	5	μA
t _{CDR} ^[3]	Chip Deselect to Data Retention Time			0			ns
t _R ^[4]	Operation Recovery Time			100			μs

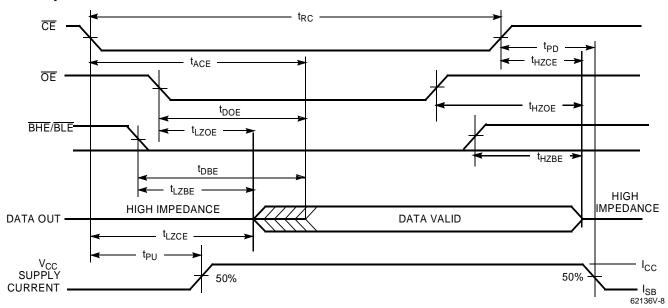
Data Retention Waveform

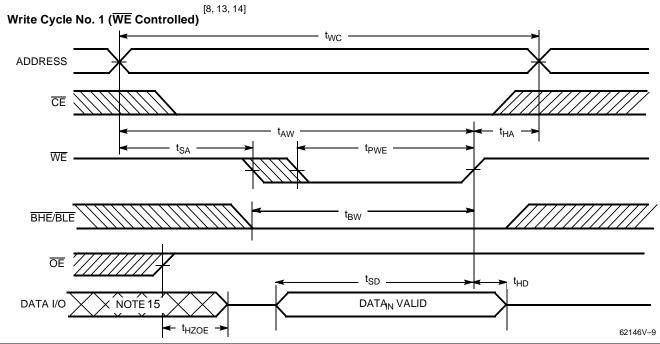

- Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min)} \ge 100~\mu s$ or stable at $V_{CC(min)} \ge 100~\mu s$. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to V_{CC} typ., and output loading of the specified $I_{OL} I_{OH}$ and 30 pF load capacitance.

Switching Characteristics Over the Operating Range^[5]

		70) ns		
Parameter			Max.	Unit	
READ CYCLE		•	1		
t _{RC}	Read Cycle Time	70		ns	
t _{AA}	Address to Data Valid		70	ns	
t _{OHA}	Data Hold from Address Change	10		ns	
t _{ACE}	CE LOW to Data Valid		70	ns	
t _{DOE}	OE LOW to Data Valid		35	ns	
t _{LZOE}	OE LOW to Low Z ^[6]	5		ns	
t _{HZOE}	OE HIGH to High Z ^[6, 7]		25	ns	
t _{LZCE}	CE LOW to Low Z ^[6]	10		ns	
t _{HZCE}	CE HIGH to High Z ^[6, 7]		25	ns	
t _{PU}	CE LOW to Power-Up	0		ns	
t _{PD}	CE HIGH to Power-Down		70	ns	
t _{DBE}	BLE / BHE LOW to Data Valid		35	ns	
t _{LZBE}	BLE / BHE LOW to Low Z ^[6, 7]	5		ns	
t _{HZBE}	BLE / BHE HIGH to High Z ^[8]		25	ns	
WRITE CYCLE ^[8, 9]				•	
t _{WC}	Write Cycle Time	70		ns	
t _{SCE}	CE LOW to Write End	60		ns	
t _{AW}	Address Set-Up to Write End	60		ns	
t _{HA}	Address Hold from Write End	0		ns	
t _{SA}	Address Set-Up to Write Start	0		ns	
t _{PWE}	WE Pulse Width	50		ns	
t _{BW}	BLE / BHE LOW to Write End	60		ns	
t _{SD}	Data Set-Up to Write End	30		ns	
t _{HD}	Data Hold from Write End	0		ns	
t _{HZWE}	WE LOW to High Z ^[6, 7]		25	ns	
t _{LZWE}	WE HIGH to Low Z ^[6]	10		ns	

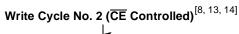
Switching Waveforms

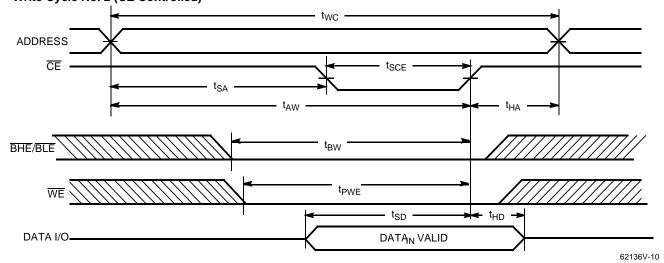



- 6. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZCE}, and t_{HZWE} for any given device.
 7. t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
 8. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
 9. The minimum write cycle time for write cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.
 10. Device is continuously selected. OE, CE = V_{IL}.
 11. WE is HIGH for read cycle.

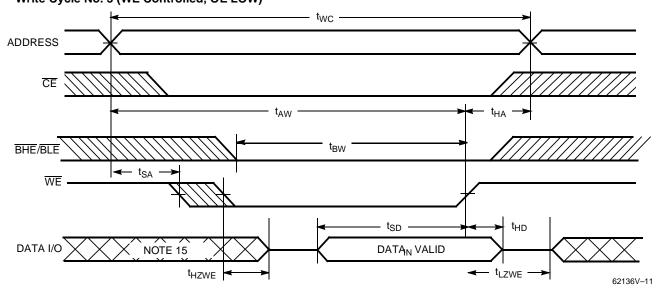
Switching Waveforms (continued)

Read Cycle No. 2 [11, 12]

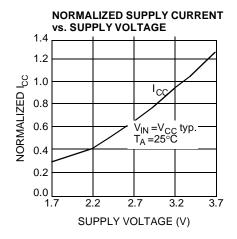


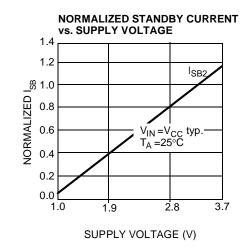


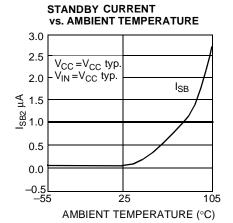
- Address valid prior to or coincident with \(\overline{CE}\) transition LOW.
 Data I/O is high impedance if \(\overline{OE} = V_{IH}\).
 If \(\overline{CE}\) goes HIGH simultaneously with \(\overline{WE}\) HIGH, the output remains in a high-impedance state.
 During this period, the I/Os are in output state and input signals should not be applied.

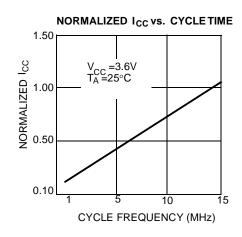


Switching Waveforms (continued)







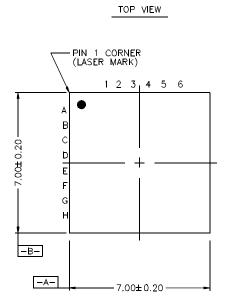


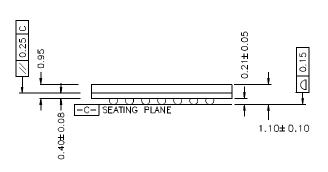
Typical DC and AC Characteristics

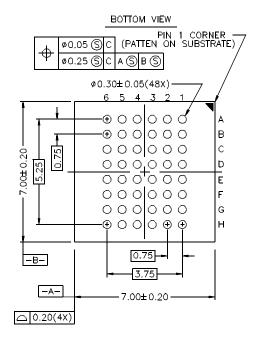
Truth Table

CE	WE	ŌĒ	BHE	BLE	Inputs/Outputs Mode		Power
Н	Х	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	L	L	L	Data Out (I/O _O -I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	Data Out (I/O _O -I/O ₇); I/O ₈ -I/O ₁₅ in High Z	Read	Active (I _{CC})
L	Н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Read	Active (I _{CC})
L	Н	Н	L	L	High Z	Deselect/Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	High Z	Deselect/Output Disabled	Active (I _{CC})
L	Н	Н	L	Н	High Z	Deselect/Output Disabled	Active (I _{CC})
L	L	Х	L	L	Data In (I/O _O -I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	Ĺ	Data In (I/O _O -I/O ₇); I/O ₈ -I/O ₁₅ in High Z	Write	Active (I _{CC})
L	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Write	Active (I _{CC})

Ordering Information

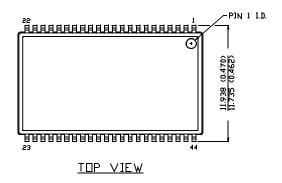

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	CY62136VLL-70ZI	Z44	44-Pin TSOP II	Industrial
	CY62136VLL-70BAI	BA48	48-Ball Fine Pitch BGA	
	CY62136V18LL-70BAI	BA48	48-Ball Fine Pitch BGA	

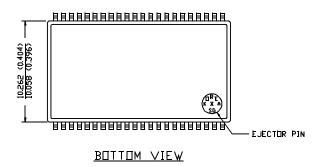

Shaded areas contain preliminary information.

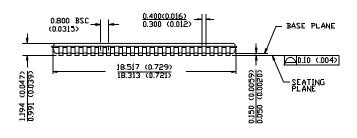

Document #: 38–00728–*B

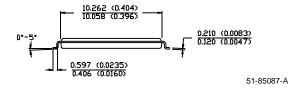
Package Diagrams

48-Ball (7.00 mm x 7.00 mm) FBGA BA48


51-85096-A




Package Diagrams (continued)


44-Pin TSOP II Z44

DIMENSION IN MM (INCH)
MAX
MIN.

