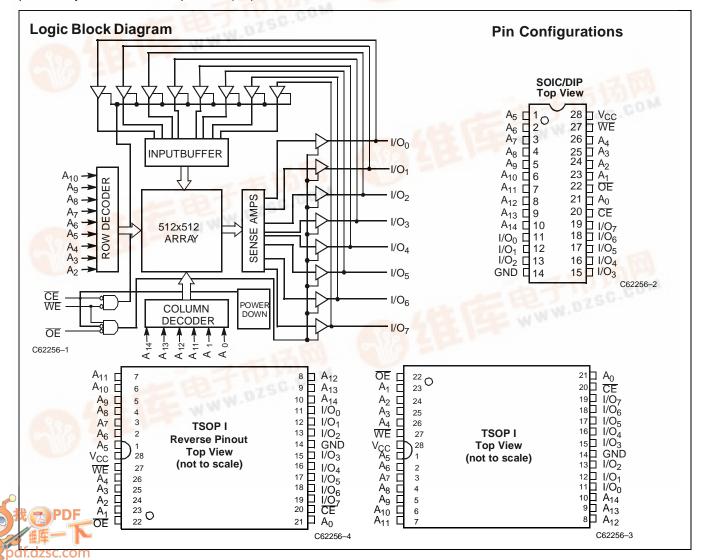


# CY62256

# 32Kx8 Static RAM

#### **Features**

- 4.5V-5.5V Operation
- Low active power (70 ns, LL version)
  - -275 mW (max.)
- Low standby power (70 ns, LL version)
  - 28 μW (max.)
- 55, 70 ns access time
- Easy memory expansion with CE and OE features
- TTL-compatible inputs and outputs
- Automatic power-down when deselected
- · CMOS for optimum speed/power


## **Functional Description**

The CY62256 is a high-performance CMOS static RAM organized as 32,768 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable (CE) and active LOW

output enable ( $\overline{OE}$ ) and three-state drivers. This device has an automatic power-down feature, reducing the power consumption by 99.9% when deselected. The CY62256 is in the standard 450-mil-wide (300-mil body width) SOIC, TSOP, and 600-mil PDIP packages.

An active LOW write enable signal ( $\overline{\text{WE}}$ ) controls the writing/reading operation of the memory. When  $\overline{\text{CE}}$  and  $\overline{\text{WE}}$  inputs are both LOW, data on the eight data input/output pins (I/O<sub>0</sub> through I/O<sub>7</sub>) is written into the memory location addressed by the address present on the address pins (A<sub>0</sub> through A<sub>14</sub>). Reading the device is accomplished by selecting the device and enabling the outputs,  $\overline{\text{CE}}$  and  $\overline{\text{OE}}$  active LOW, while  $\overline{\text{WE}}$  remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins are present on the eight data input/output pins.

The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and write enable (WE) is HIGH.





# **Maximum Ratings**

| Output Current into Outputs (LOW)                      | 20 mA   |
|--------------------------------------------------------|---------|
| Static Discharge Voltage(per MIL-STD-883, Method 3015) | >2001V  |
| Latch-Up Current                                       | >200 mA |

# **Operating Range**

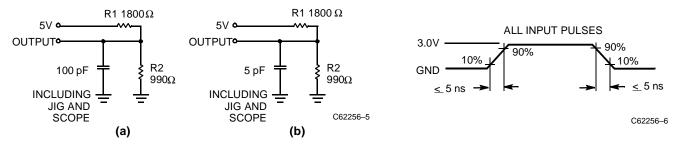
| Range      | Ambient Temperature | v <sub>cc</sub> |
|------------|---------------------|-----------------|
| Commercial | 0°C to +70°C        | 5V ± 10%        |
| Industrial | -40°C to +85°C      | 5V ± 10%        |

# **Electrical Characteristics** Over the Operating Range

|                  |                                                                                                                                                                                                                                 |                                               |      | CY62256-55 |                    |                          | CY62256-70 |                    |                          |      |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------|------------|--------------------|--------------------------|------------|--------------------|--------------------------|------|--|
| Parameter        | Description                                                                                                                                                                                                                     | Test Conditions                               |      | Min.       | Typ <sup>[2]</sup> | Max.                     | Min.       | Typ <sup>[2]</sup> | Max.                     | Unit |  |
| V <sub>OH</sub>  | Output HIGH Voltage                                                                                                                                                                                                             | $V_{CC} = Min., I_{OH} = -1.$                 | 0 mA | 2.4        |                    |                          | 2.4        |                    |                          | V    |  |
| V <sub>OL</sub>  | Output LOW Voltage                                                                                                                                                                                                              | $V_{CC} = Min., I_{OL} = 2.1$                 | mΑ   |            |                    | 0.4                      |            |                    | 0.4                      | V    |  |
| V <sub>IH</sub>  | Input HIGH Voltage                                                                                                                                                                                                              | 00 00                                         |      | 2.2        |                    | V <sub>CC</sub><br>+0.5V | 2.2        |                    | V <sub>CC</sub><br>+0.5V | V    |  |
| V <sub>IL</sub>  | Input LOW Voltage                                                                                                                                                                                                               |                                               |      | -0.5       |                    | 0.8                      | -0.5       |                    | 0.8                      | V    |  |
| I <sub>IX</sub>  | Input Load Current                                                                                                                                                                                                              | $GND \le V_1 \le V_{CC}$                      |      | -0.5       |                    | +0.5                     | -0.5       |                    | +0.5                     | μΑ   |  |
| I <sub>OZ</sub>  | Output Leakage<br>Current                                                                                                                                                                                                       | $GND \leq V_{O} \leq V_{CC}, OutputDis$ abled |      | -0.5       |                    | +0.5                     | -0.5       |                    | +0.5                     | μА   |  |
| I <sub>CC</sub>  | $\begin{array}{c} V_{CC} \mbox{ Operating Supply} \\ \mbox{ Current} \end{array} \qquad \begin{array}{c} V_{CC} = \mbox{Max.}, \\ \mbox{ I_{OUT}} = 0 \mbox{ mA}, \\ \mbox{ f} = \mbox{ f}_{MAX} = 1/\mbox{t}_{RC} \end{array}$ |                                               |      | 28         | 55                 |                          | 28         | 55                 | mA                       |      |  |
|                  |                                                                                                                                                                                                                                 |                                               | L    |            | 25                 | 50                       |            | 25                 | 50                       | mA   |  |
|                  |                                                                                                                                                                                                                                 |                                               | LL   |            | 25                 | 50                       |            | 25                 | 50                       | mA   |  |
| I <sub>SB1</sub> | Automatic CE                                                                                                                                                                                                                    | Max. $V_{CC}$ , $\overline{CE} \ge V_{IH}$ ,  |      |            | 0.5                | 2                        |            | 0.5                | 2                        | mA   |  |
|                  | Power-Down Current—<br>TTL Inputs                                                                                                                                                                                               | $ V_{INI} \leq V_{II}$ , $f = f_{M\Delta X}$  | L    |            | 0.4                | 0.6                      |            | 0.4                | 0.6                      | mA   |  |
|                  | TTE inputs                                                                                                                                                                                                                      |                                               | LL   |            | 0.3                | 0.5                      |            | 0.3                | 0.5                      | mA   |  |
| I <sub>SB2</sub> | CMOS Inputs $ V_{IN} \ge V_{CC} - 0.3V$                                                                                                                                                                                         |                                               |      | 1          | 5                  |                          | 1          | 5                  | mA                       |      |  |
|                  |                                                                                                                                                                                                                                 | $V_{IN} \ge V_{CC} - 0.3V$                    | L    |            | 2                  | 50                       |            | 2                  | 50                       | μΑ   |  |
|                  |                                                                                                                                                                                                                                 |                                               | LL   |            | 0.1                | 5                        |            | 0.1                | 5                        | μΑ   |  |
|                  |                                                                                                                                                                                                                                 | Indust'l Temp Range                           | LL   |            | 0.1                | 10                       |            | 0.1                | 10                       | μΑ   |  |

Shaded area contains preliminary information.

# Capacitance<sup>[3]</sup>

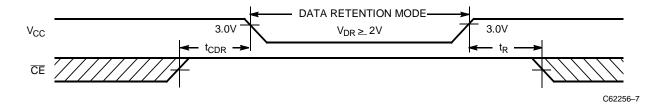

| Parameter        | Description        | Test Conditions                         | Max. | Unit |
|------------------|--------------------|-----------------------------------------|------|------|
| C <sub>IN</sub>  | Input Capacitance  | $T_A = 25^{\circ}C, f = 1 \text{ MHz},$ | 6    | pF   |
| C <sub>OUT</sub> | Output Capacitance | $V_{CC} = 5.0V$                         | 8    | pF   |

#### Note:

- 1.  $V_{IL}$  (min.) = -2.0V for pulse durations of less than 20 ns.
- Typical specifications are the mean values measured over a large sample size across normal production process variations and are taken at nominal conditions (T<sub>A</sub> = 25°C, V<sub>CC</sub>). Parameters are guaranteed by design and characterization, and not 100% tested.
- 3. Tested initially and after any design or process changes that may affect these parameters.



# **AC Test Loads and Waveforms**




Equivalent to: THÉ/ENIN EQUIVALENT  $639\Omega$  OUTPUT • • • • • • 1.77V

# **Data Retention Characteristics**

| Parameter                       | Description                             |             | Conditions <sup>[4]</sup>                                 | Min.            | <b>Typ</b> . <sup>[2]</sup> | Max. | Unit |
|---------------------------------|-----------------------------------------|-------------|-----------------------------------------------------------|-----------------|-----------------------------|------|------|
| $V_{DR}$                        | V <sub>CC</sub> for Data Retention      |             | $\frac{V_{CC} = 3.0V,}{CE \ge V_{CC} - 0.3V,}$            | 2.0             |                             |      | V    |
| I <sub>CCDR</sub>               | Data Retention Current                  | L           | $CE \ge V_{CC} - 0.3V$ ,<br>$V_{IN} \ge V_{CC} - 0.3V$ or |                 | 2                           | 50   | μΑ   |
|                                 |                                         | LL          | V <sub>IN</sub> ≤ 0.3V                                    |                 | 0.1                         | 5    | μΑ   |
|                                 |                                         | LL Indust'l |                                                           |                 | 0.1                         | 10   | μΑ   |
| t <sub>CDR</sub> <sup>[3]</sup> | Chip Deselect to Data<br>Retention Time |             |                                                           | 0               |                             |      | ns   |
| t <sub>R</sub> <sup>[3]</sup>   | Operation Recovery Time                 | )           |                                                           | t <sub>RC</sub> |                             |      | ns   |

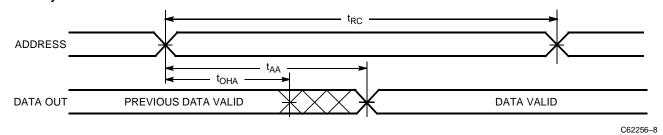
# **Data Retention Waveform**



#### Note:

4. No input may exceed  $V_{CC}$ +0.5V.




# Switching Characteristics Over the Operating Range<sup>[5]</sup>

|                              |                                     | CY62 | 256–55 | CY62 |      |      |
|------------------------------|-------------------------------------|------|--------|------|------|------|
| Parameter                    | Description                         | Min. | Max.   | Min. | Max. | Unit |
| READ CYCLE                   |                                     | 1    | •      | •    | •    | •    |
| t <sub>RC</sub>              | Read Cycle Time                     | 55   |        | 70   |      | ns   |
| t <sub>AA</sub>              | Address to Data Valid               |      | 55     |      | 70   | ns   |
| t <sub>OHA</sub>             | Data Hold from Address Change       | 5    |        | 5    |      | ns   |
| t <sub>ACE</sub>             | CE LOW to Data Valid                |      | 55     |      | 70   | ns   |
| t <sub>DOE</sub>             | OE LOW to Data Valid                |      | 25     |      | 35   | ns   |
| t <sub>LZOE</sub>            | OE LOW to Low Z <sup>[6]</sup>      | 5    |        | 5    |      | ns   |
| t <sub>HZOE</sub>            | OE HIGH to High Z <sup>[6, 7]</sup> |      | 20     |      | 25   | ns   |
| t <sub>LZCE</sub>            | CE LOW to Low Z <sup>[6]</sup>      | 5    |        | 5    |      | ns   |
| t <sub>HZCE</sub>            | CE HIGH to High Z <sup>[6, 7]</sup> |      | 20     |      | 25   | ns   |
| t <sub>PU</sub>              | CE LOW to Power-Up                  | 0    |        | 0    |      | ns   |
| t <sub>PD</sub>              | CE HIGH to Power-Down               |      | 55     |      | 70   | ns   |
| WRITE CYCLE <sup>[8, 9</sup> | )                                   | ·    |        |      |      |      |
| t <sub>WC</sub>              | Write Cycle Time                    | 55   |        | 70   |      | ns   |
| t <sub>SCE</sub>             | CE LOW to Write End                 | 45   |        | 60   |      | ns   |
| t <sub>AW</sub>              | Address Set-Up to Write End         | 45   |        | 60   |      | ns   |
| t <sub>HA</sub>              | Address Hold from Write End         | 0    |        | 0    |      | ns   |
| t <sub>SA</sub>              | Address Set-Up to Write Start       | 0    |        | 0    |      | ns   |
| t <sub>PWE</sub>             | WE Pulse Width                      | 40   |        | 50   |      | ns   |
| t <sub>SD</sub>              | Data Set-Up to Write End            | 25   |        | 30   |      | ns   |
| t <sub>HD</sub>              | Data Hold from Write End            | 0    |        | 0    |      | ns   |
| t <sub>HZWE</sub>            | WE LOW to High Z <sup>[6, 7]</sup>  |      | 20     |      | 25   | ns   |
| t <sub>LZWE</sub>            | WE HIGH to Low Z <sup>[6]</sup>     | 5    |        | 5    |      | ns   |

Shaded area contains preliminary information.

# **Switching Waveforms**

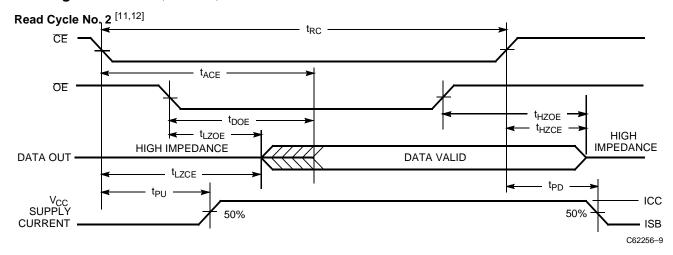
Read Cycle No. 1<sup>[10,11]</sup>

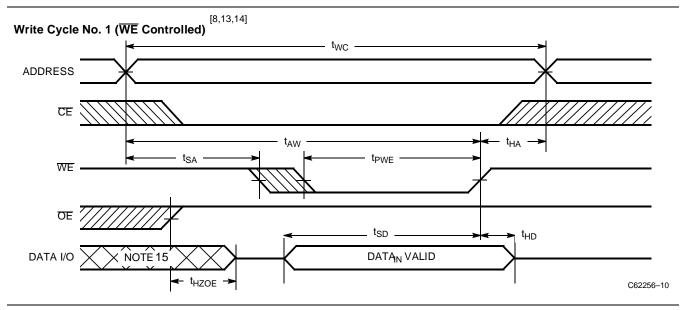


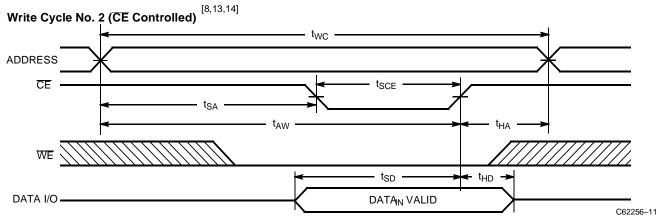
#### Notes:

- Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified  $l_{OL}/l_{OH}$  and 100-pF load capacitance.

  At any given temperature and voltage condition,  $t_{HZCE}$  is less than  $t_{LZCE}$ ,  $t_{HZOE}$ , and  $t_{HZWE}$  is less than  $t_{LZWE}$  for any given device.  $t_{HZOE}$ ,  $t_{HZCE}$ , and  $t_{HZWE}$  are specified with  $C_L = 5$  pF as in part (b) of AC Test Loads. Transition is measured  $\pm 500$  mV from steady-state voltage.


  The internal write time of the memory is defined by the overlap of  $\overline{CE}$  LOW and  $\overline{WE}$  LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.


  The minimum write cycle time for write cycle #3 ( $\overline{WE}$  controlled,  $\overline{OE}$  LOW) is the sum of  $t_{HZWE}$  and  $t_{SD}$


- 10. Device is continuously selected.  $\overline{OE}$ ,  $\overline{CE} = V_{IL}$ .
- 11. WE is HIGH for read cycle.

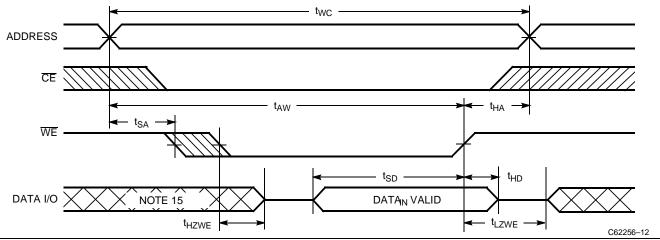


# Switching Waveforms (continued)







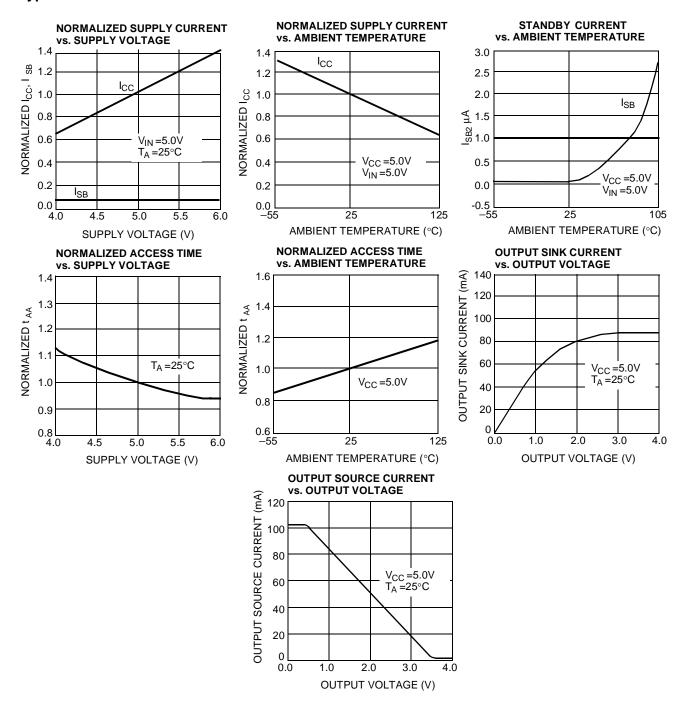

#### Notes:

Address valid prior to or coincident with CE transition LOW.
 Data I/O is high impedance if OE = V<sub>IH</sub>.
 If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.



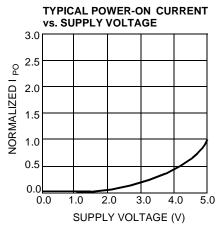
# Switching Waveforms (continued)

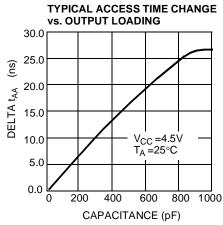
# Write Cycle No. 3 (WE Controlled, $\overline{\text{OE}}$ LOW) $^{[9,14]}$

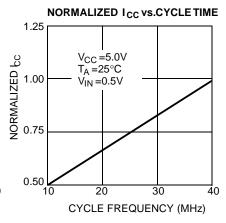



#### Note:

15. During this period, the I/Os are in output state and input signals should not be applied.





# Typical DC and AC Characteristics






# Typical DC and AC Characteristics (continued)







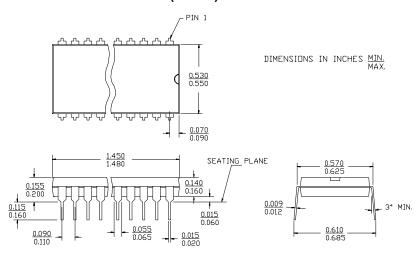
# **Truth Table**

| CE | WE | OE | Inputs/Outputs | Mode                      | Power                      |
|----|----|----|----------------|---------------------------|----------------------------|
| Н  | Х  | Х  | High Z         | Deselect/Power-Down       | Standby (I <sub>SB</sub> ) |
| L  | Н  | L  | Data Out       | Read                      | Active (I <sub>CC</sub> )  |
| L  | L  | Х  | Data In        | Write                     | Active (I <sub>CC</sub> )  |
| L  | Н  | Η  | High Z         | Deselect, Output Disabled | Active (I <sub>CC</sub> )  |

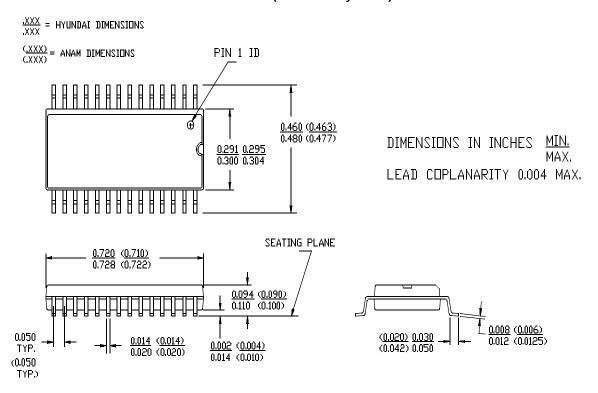


# **Ordering Information**

| Speed<br>(ns) | Ordering Code   | Package<br>Name | Package Type                               | Operating<br>Range |
|---------------|-----------------|-----------------|--------------------------------------------|--------------------|
| 55            | CY62256-55SNC   | S22             | 28-Lead 450-Mil (300-Mil Body Width) SOIC  | Commercial         |
|               | CY62256L-55SNC  | S22             | 28-Lead 450-Mil (300-Mil Body Width) SOIC  |                    |
|               | CY62256LL-55SNC | S22             | 28-Lead 450-Mil (300-Mil Body Width) SOIC  |                    |
|               | CY62256-55ZRC   | ZR28            | 28-Lead Reverse Thin Small Outline Package |                    |
|               | CY62256L-55ZRC  | ZR28            | 28-Lead Reverse Thin Small Outline Package |                    |
|               | CY62256LL-55ZRC | ZR28            | 28-Lead Reverse Thin Small Outline Package |                    |
|               | CY62256-55ZC    | Z28             | 28-Lead Thin Small Outline Package         |                    |
|               | CY62256L-55ZC   | Z28             | 28-Lead Thin Small Outline Package         |                    |
|               | CY62256LL-55ZC  | Z28             | 28-Lead Thin Small Outline Package         |                    |
|               | CY62256-55PC    | P15             | 28-Lead (600-Mil) Molded DIP               |                    |
| 70            | CY62256-70SNC   | S22             | 28-Lead 450-Mil (300-Mil Body Width) SOIC  | Commercial         |
|               | CY62256L-70SNC  | S22             | 28-Lead 450-Mil (300-Mil Body Width) SOIC  |                    |
|               | CY62256LL-70SNC | S22             | 28-Lead 450-Mil (300-Mil Body Width) SOIC  |                    |
|               | CY62256-70SNI   | S22             | 28-Lead 450-Mil (300-Mil Body Width) SOIC  | Industrial         |
|               | CY62256L-70SNI  | S22             | 28-Lead 450-Mil (300-Mil Body Width) SOIC  |                    |
|               | CY62256LL-70SNI | S22             | 28-Lead 450-Mil (300-Mil Body Width) SOIC  |                    |
|               | CY62256-70ZC    | Z28             | 28-Lead Thin Small Outline Package         | Commercial         |
|               | CY62256L-70ZC   | Z28             | 28-Lead Thin Small Outline Package         |                    |
|               | CY62256LL-70ZC  | Z28             | 28-Lead Thin Small Outline Package         |                    |
|               | CY62256-70ZI    | Z28             | 28-Lead Thin Small Outline Package         | Industrial         |
|               | CY62256L-70ZI   | Z28             | 28-Lead Thin Small Outline Package         |                    |
|               | CY62256LL-70ZI  | Z28             | 28-Lead Thin Small Outline Package         |                    |
|               | CY62256-70PC    | P15             | 28-Lead (600-Mil) Molded DIP               | Commercial         |
|               | CY62256L-70PC   | P15             | 28-Lead (600-Mil) Molded DIP               |                    |
|               | CY62256LL-70PC  | P15             | 28-Lead (600-Mil) Molded DIP               |                    |
|               | CY62256-70ZRC   | ZR28            | 28-Lead Reverse Thin Small Outline Package |                    |
|               | CY62256L-70ZRC  | ZR28            | 28-Lead Reverse Thin Small Outline Package |                    |
|               | CY62256LL-70ZRC | ZR28            | 28-Lead Reverse Thin Small Outline Package |                    |


Shaded area contains preliminary information.

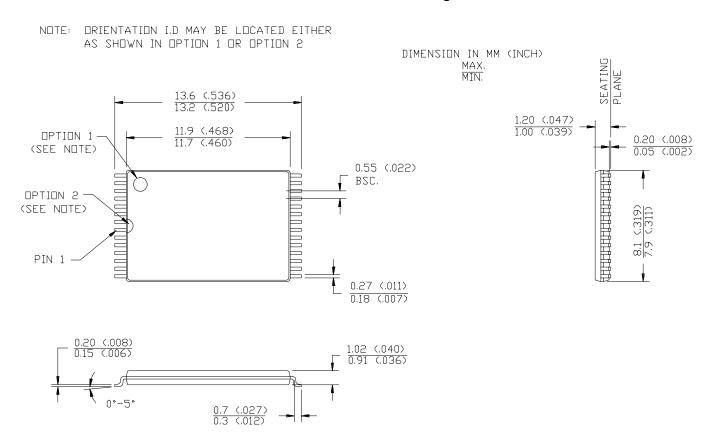
Document #: 38-00455-C




# **Package Diagrams**

## 28-Lead (600-Mil) Molded DIP P15

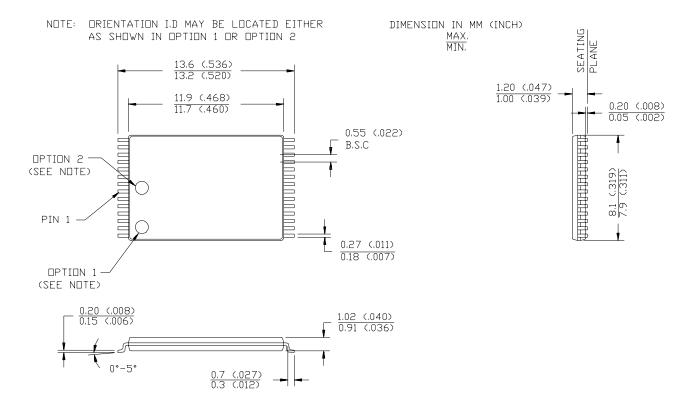



## 28-Lead 450-Mil (300-Mil Body Width) SOIC S22





# Package Diagrams (continued)


## 28-Lead Thin Small Outline Package Z28





# Package Diagrams (continued)

#### 28-Lead Reverse Thin Small Outline Package ZR28

