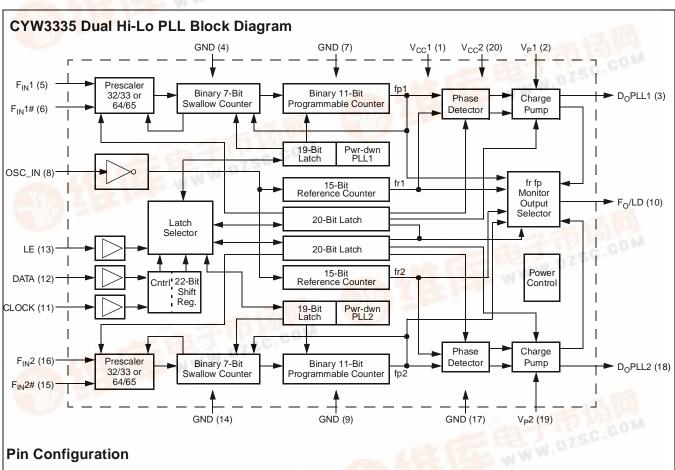
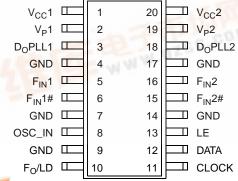


CYW3335


Dual Serial Input PLL with 2.5-GHz Prescalers

Features


- Operating voltage 2.7V to 5.5V
- PLL1 and PLL2 operating frequency: - 2.5 GHz with prescaler ratios of 32/33 or 64/65
- · Lock detect feature
- Power-down mode I_{CC} < 1 μA typical at 3.0V
- 20-pin TSSOP (Thin Shrink Small Outline Package)

Applications

The Cypress CYW3335 is a dual serial input PLL frequency synthesizer designed to combine the Transmit and Receive RF frequency sections of wireless communications systems. Two 2.5-GHz prescalers, each with pulse swallow capability are included. The device operates from 2.7V and dissipates only 38 mW.

Pin Configuration

f.dzsc.com

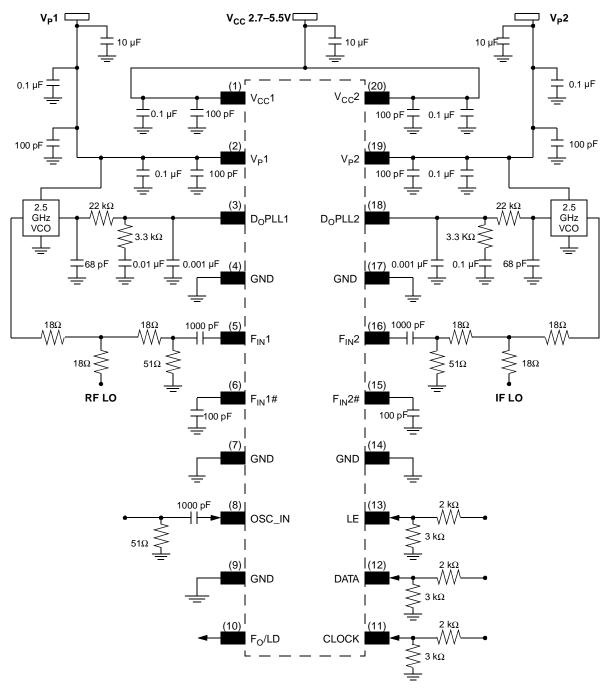


Figure 1. Application Diagram Example - CYW3335 2.5-GHz Dual Hi/Hi PLL

Pin Definitions

Pin Name	Pin No.	Pin Type	Pin Description
V _{CC}	1	Р	Power Supply Connection for PLL1 and PLL2: When power is removed from both the V _{CC} 1 and V _{CC} 2 pins, all latched data is lost.
V _P 1	2	Р	PLL1 Charge Pump Rail Voltage: This voltage accommodates VCO circuits with tuning voltages higher than the V _{CC} of PLL1.
D _O PLL1	3	0	PLL1 Charge Pump Output: The phase detector gain is $I_P/2\pi$. Sense polarity can be reversed by setting the FC bit in software (via the Shift Register).
GND	4	G	Analog and Digital Ground Connection: This pin must be grounded.
F _{IN} 1	5	I	Input to PLL1 Prescaler: Maximum frequency 2.5 GHz.
F _{IN} 1#	6	I	Complementary Input to PLL1 Prescaler: A bypass capacitor should be placed as close as possible to this pin and must be connected directly to the ground plane.
GND	7	G	Analog and Digital Ground Connection: This pin must be grounded.
OSC_IN	8	I	Oscillator Input: This input has a V _{CC} /2 threshold and CMOS logic level sensitivity.
GND	9	G	Reference Ground Connection: This pin must be grounded.
F _O /LD	10	0	Lock Detect Pin of PLL1 Section: This output is HIGH when the loop is locked. It is multiplexed to the output of the programmable counters or reference dividers in the test program mode. (Refer to <i>Table 3</i> for configuration.)
CLOCK	11	I	Data Clock Input: One bit of data is loaded into the Shift Register on the rising edge of this signal.
DATA	12	I	Serial Data Input
LE	13	I	Load Enable: On the rising edge of this signal, the data stored in the Shift Register is latched into the reference counter and configuration controls, PLL1 or PLL2 depending on the state of the control bits.
GND	14	G	Analog and Digital Ground Connection: This pin must be grounded.
F _{IN} 2#	15	I	Complementary Input to PLL2 Prescaler: A bypass capacitor should be placed as close as possible to this pin and must be connected directly to the ground plane.
F _{IN} 2	16	I	Input to PLL2 Prescaler: Maximum frequency 2.5 GHz.
GND	17	G	Analog and Digital Ground Connections: This pin must be grounded.
D _O PLL2	18	0	PLL2 Charge Pump Output: The phase detector gain is $I_p/2\pi$. Sense polarity can be reversed by setting the FC bit in software (via the Shift Register).
V _P 2	19	Р	PLL2 Charge Pump Rail Voltage: This voltage accommodates VCO circuits with tuning voltages higher than the V _{CC} of PLL2.
V _{CC} 2	20	Р	Power Supply Connections for PLL1 and PLL2: When power is removed from both the $V_{CC}1$ and $V_{CC}2$ pins, all latched data is lost.

Absolute Maximum Ratings

Stresses greater than those listed in this table may cause permanent damage to the device. These represent a stress rating

only. Operation of the device at these or any other conditions above those specified in the operating sections of this specification is not implied. Maximum conditions for extended periods may affect reliability.

Parameter	Description	Rating	Unit
V _{CC} or V _P	Power Supply Voltage	-0.5 to +6.5	V
V _{OUT}	Output Voltage	-0.5 to V _{CC} +0.5	V
I _{OUT}	Output Current	±15	mA
T _L	Lead Temperature	+260	°C
T _{STG}	Storage Temperature	-55 to +150	°C

Handling Precautions

Devices should be transported and stored in antistatic containers.

These devices are static sensitive. Ensure that equipment and personnel contacting the devices are properly grounded.

Cover workbenches with grounded conductive mats.

Always turn off power before adding or removing devices from system.

Protect leads with a conductive sheet when handling or transporting PC boards with devices.

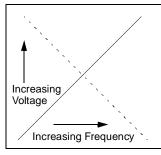
If devices are removed from the moisture protective bags for more than 36 hours, they should be baked at 85 °C in a moisture free environment for 24 hours prior to assembly in less than 24 hours.

Recommended Operating Conditions

Parameter	Description	Test Condition	Rating	Unit
V _{CC1} , V _{CC2}	Power Supply Voltage		2.7 to 5.5	V
V _P	Charge Pump Voltage		V _{CC} to +5.5	V
T _A	Operating Temperature	Ambient air at 0 CFM flow	-40 to +85	°C

Electrical Characteristics: $V_{CC} = V_P = 2.7 V$ to 5.5V, $T_A = -40 \,^{\circ}\text{C}$ to +85°C, Unless otherwise specified

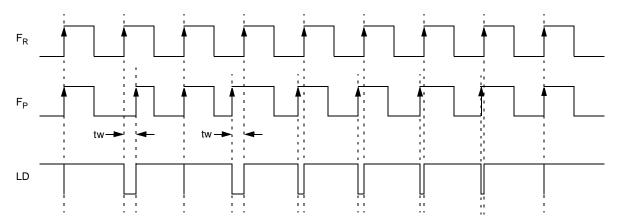
Parameter	Description	Test Condition	Pin	Min.	Тур.	Max.	Unit
I _{CC}	Power Supply Current PLL1 + PLL2	$V_{CC}1 = V_{CC}2 = 3.0V$	V _{CC} 1, V _{CC} 2		14		mA
I _{PD}	Power-down Current	Power-down, V _{CC} = 3.0V	V _{CC} 1, V _{CC} 2		1	25	μΑ
F _{IN} 1, F _{IN} 2	Operating Frequency		F _{IN} 1, F _{IN} 2	100		2500	MHz
Fosc	Oscillator Input Frequency		OSC_IN	2		45	MHz
Fφ	Maximum Phase Detector Frequency			10			MHz
PF _{IN} 1,	Input Sensitivity	V _{CC} = 2.7V	F _{IN} 1, F _{IN} 2 ^[1]	-15		4	dBm
PF _{IN} 2		V _{CC} = 5.5V		-10		4	dBm
PF _{IN} 1, PF _{IN} 2		V _{CC} = 2.7V to 5.5V	F _{IN} 1, F _{IN} 2 ^[2]	-15		4	dBm
Vosc	Oscillator Input Sensitivity	V _{CC} = 3.0V	OSC_IN	0.5			V_{P-P}
I _{IH} , I _{IL}	Oscillator Input Current			-100		100	μΑ
V _{IH}	High Level Input Voltage	V _{CC} = 3.0V	DATA,	V _{CC} * 0.8			V
V _{IL}	Low Level Input Voltage		CLOCK, LE			V _{CC} * 0.3	V
I _{IH}	High Level Input Current			-10	0.5	10	μΑ
I _{IL}	Low Level Input Current			-10	0.5	10	μΑ
V _{OH}	High level Output Voltage	$V_{CC} = 3.0V, V_I = 1 \text{ mA}$	F _O /LD	V _{CC} * 0.8			V
V _{OL}	Low Level Output Voltage					V _{CC} * 0.2	V
ID _{OH(SO)}	IDO High, Source Current	$V_{CC} = V_P = 3.0V,$	D _O PLL1		-3.8		mA
ID _{OL(SO)}	IDO Low, Source Current	$D_O = V_P/2$	D _O PLL2		-1		mA
ID _{OH(SI)}	IDO High, Sink Current				3.8		mA
ID _{OL(SI)}	IDO Low, Sink Current				1		mA
ΔIDO	ID _O Charge Pump Sink and Source Mismatch	$\begin{split} &V_{CC} = V_P = 3.0V, \\ &D_O = V_P/2 \\ &[IID_{O(SI)}I - IID_{O(SO)}I]/\\ &[1/2^*\{IID_{O(SI)}]I + IID_{O(SO)}I\}]^*100\% \end{split}$			3	15	%
ID _O vs T	Charge Pump Current Variation vs Temperature	$-40^{\circ}\text{C} < \text{T} < 85^{\circ}\text{C} \text{V}_{DO} = \text{V}_{P}/2^{[3]}$			5		%
I _{OFF}	High Impedance Leakage Current	V _{CC} = V _P = 3.0V, Loop locked, between reference spikes			±2.5		nA


Notes:

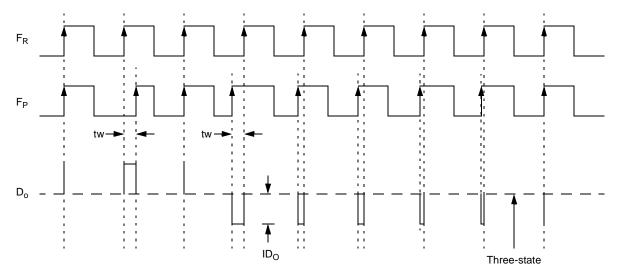
^{1. 2.0} GHz ≤ F_{IN} ≤ 2.5 GHz. 2. F_{IN} < 2.0 GHz. 3. ID_Ovs T; Charge pump current variation vs. temperature. [IID_O(SI)@TI - IID_O(SI)@25° CI]/IID_O(SI)@25° CI * 100% and [IID_O(SO)@TI - IID_O(SO)@25° CI]/IID_O(SO)@25° CI * 100%.

Timing Waveforms

Key:

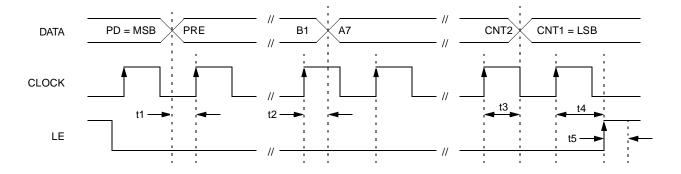


VCO Characteristics


FC Bit HIGH	
FC Bit LOW	
(Refer to Table 2	for meaning of FC bit.)

Phase Comparator Sense

Phase Detector Output Waveform



D_O Charge Pump Output Current Waveform

Timing Waveforms (continued) Serial Data Input Timing Waveform [4, 5, 6, 7]

Serial Data Input

Data is input serially using the DATA, CLOCK, and LE pins. Two control bits direct data into the locations given in Table 1.

Table 1. Control Configuration

CNT1	CNT2	Function
0	0	Program Reference 2 : R = 3 to 32767, set PLL2 (low frequency) phase detector polarity, set current in PLL2, set PLL2 three-state, set monitor selector to PLL2.
0	1	Program Reference 1: R = 3 to 32767, set PLL1 (high frequency) phase detector polarity, set current in PLL1, set PLL1 three-state, set monitor selector to PLL1
1	0	Program Counter for PLL2: A = 0 to 63, B = 3 to 2047, set PLL2 prescaler ratio, set powerdown to PLL2.
1	1	Program Counter for PLL1: A = 0 to 63, B = 3 to 2047, set PLL1 prescaler ratio, set power-down to PLL1.

Notes:

- t1–t5 = 50 µs > t > 0.5 µs.

 CLOCK may remain HIGH after latching in data.

 DATA is shifted in with the MSB first.

 For DATA definitions, refer to *Table 2*.

Table 2. Shift Register Configuration^[8]

Reference Counter and Configuration Bits CNT1 CNT2 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 FC IDO TS LD Programmable Counter bits CNT1 CNT2 A1 A2 A3 A4 A5 A6 A7 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 PRI Bit(s) Name Function CNT1, CNT2 Control Bits: Directs programming data to PLL1 or PLL2. R1-R15 Reference Counter Setting Bits: 15 bits, R = 3 to 32767. [9] FC Phase Sense of the Phase Detector: Set to match the VCO polarity, H = + (Positive VCO transfer fur IDO Charge Pump Setting Bit: IDO HIGH = 3.8 mA, IDO LOW = 1 mA. TS Three-state Bit: Three-states the DO output for PLL2 and PLL1 when HIGH. LD Lock Detect: Directs the lock detect signal source pin 10. Pin 10 is HIGH with narrow low excursions when not locked, this pin is LOW. FO Frequency Out: This bit can be set to read out reference or programmable divider at the LD pin for test put PRE Prescaler Divide Bit: For PLL1 and PLL2: LOW = 32/33 and HIGH = 64/65. PD Power-down: LOW = power-up and HIGH = power-down. F _{IN} is at high-impedance state, respective Bot is disabled, forces three-state at DO outputs and phase comparators are disabled. The reference count disabled and the OSC input is high-impedance after both PLLs are powered down. Data can be input and in the power-down state. A1-A7 Swallow Counter Divide Ratio: A = 0 to 63 for both PLL1 and PLL2.	Table	2. 011		gioto		ga.c																
Programmable Counter bits CNT1 CNT2 A1 A2 A3 A4 A5 A6 A7 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 PRI Bit(s) Name	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Programmable Counter bits CNT1 CNT2 A1 A2 A3 A4 A5 A6 A7 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 PRI Bit(s) Name Function CNT1, CNT2 Control Bits: Directs programming data to PLL1 or PLL2. R1-R15 Reference Counter Setting Bits: 15 bits, R = 3 to 32767. [9] FC Phase Sense of the Phase Detector: Set to match the VCO polarity, H = + (Positive VCO transfer fur IDO Charge Pump Setting Bit: IDO HIGH = 3.8 mA, IDO LOW = 1 mA. TS Three-state Bit: Three-states the DO output for PLL2 and PLL1 when HIGH. LD Lock Detect: Directs the lock detect signal source pin 10. Pin 10 is HIGH with narrow low excursions of locked. When not locked, this pin is LOW. FO Frequency Out: This bit can be set to read out reference or programmable divider at the LD pin for test put PRE Prescaler Divide Bit: For PLL1 and PLL2: LOW = 32/33 and HIGH = 64/65. PD Power-down: LOW = power-up and HIGH = power-down. FIN is at a high-impedance state, respective B or is disabled, forces three-state at DO outputs and phase comparators are disabled. The reference count disabled and the OSC input is high-impedance after both PLLs are powered down. Data can be input and in the power-down state. A1-A7 Swallow Counter Divide Ratio: A = 0 to 63 for both PLL1 and PLL2.	Refer	ence (Coun	ter an	d Cor	nfigur	ation	Bits														
Bit(s) Name Function CNT1, CNT2 Control Bits: Directs programming data to PLL1 or PLL2. R1-R15 Reference Counter Setting Bits: 15 bits, R = 3 to 32767. [9] FC Phase Sense of the Phase Detector: Set to match the VCO polarity, H = + (Positive VCO transfer fur IDO Charge Pump Setting Bit: IDO HIGH = 3.8 mA, IDO LOW = 1 mA. TS Three-state Bit: Three-states the DO output for PLL2 and PLL1 when HIGH. LD Lock Detect: Directs the lock detect signal source pin 10. Pin 10 is HIGH with narrow low excursions of locked. When not locked, this pin is LOW. FO Frequency Out: This bit can be set to read out reference or programmable divider at the LD pin for test put PRE Prescaler Divide Bit: For PLL1 and PLL2: LOW = 32/33 and HIGH = 64/65. PD Power-down: LOW = power-up and HIGH = power-down. F _{IN} is at a high-impedance state, respective Board is disabled, forces three-state at DO outputs and phase comparators are disabled. The reference count disabled and the OSC input is high-impedance after both PLLs are powered down. Data can be input and in the power-down state. A1-A7 Swallow Counter Divide Ratio: A = 0 to 63 for both PLL1 and PLL2.	CNT1	CNT2	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	FC	IDO	TS	LD	FO
CNT1 CNT2 A1 A2 A3 A4 A5 A6 A7 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 PRI Bit(s) Name Function CNT1, CNT2 Control Bits: Directs programming data to PLL1 or PLL2. R1-R15 Reference Counter Setting Bits: 15 bits, R = 3 to 32767. [9] FC Phase Sense of the Phase Detector: Set to match the VCO polarity, H = + (Positive VCO transfer fur IDO Charge Pump Setting Bit: IDO HIGH = 3.8 mA, IDO LOW = 1 mA. TS Three-state Bit: Three-states the DO output for PLL2 and PLL1 when HIGH. LD Lock Detect: Directs the lock detect signal source pin 10. Pin 10 is HIGH with narrow low excursions of locked. When not locked, this pin is LOW. FO Frequency Out: This bit can be set to read out reference or programmable divider at the LD pin for test put PRE Prescaler Divide Bit: For PLL1 and PLL2: LOW = 32/33 and HIGH = 64/65. PD Power-down: LOW = power-up and HIGH = power-down. F _{IN} is at a high-impedance state, respective Board is disabled, forces three-state at DO outputs and phase comparators are disabled. The reference count disabled and the OSC input is high-impedance after both PLLs are powered down. Data can be input and in the power-down state. A1-A7 Swallow Counter Divide Ratio: A = 0 to 63 for both PLL1 and PLL2.																						
Bit(s) Name Function CNT1, CNT2 Control Bits: Directs programming data to PLL1 or PLL2. R1–R15 Reference Counter Setting Bits: 15 bits, R = 3 to 32767. [9] FC Phase Sense of the Phase Detector: Set to match the VCO polarity, H = + (Positive VCO transfer fur IDO Charge Pump Setting Bit: IDO HIGH = 3.8 mA, IDO LOW = 1 mA. TS Three-state Bit: Three-states the DO output for PLL2 and PLL1 when HIGH. LD Lock Detect: Directs the lock detect signal source pin 10. Pin 10 is HIGH with narrow low excursions to locked. When not locked, this pin is LOW. FO Frequency Out: This bit can be set to read out reference or programmable divider at the LD pin for test put PRE Prescaler Divide Bit: For PLL1 and PLL2: LOW = 32/33 and HIGH = 64/65. PD Power-down: LOW = power-up and HIGH = power-down. FIN is at a high-impedance state, respective Book is disabled, forces three-state at DO outputs and phase comparators are disabled. The reference count disabled and the OSC input is high-impedance after both PLLs are powered down. Data can be input and in the power-down state. A1–A7 Swallow Counter Divide Ratio: A = 0 to 63 for both PLL1 and PLL2.	Progr	amma	ble C	ounte	er bits	3																
CNT1, CNT2 Control Bits: Directs programming data to PLL1 or PLL2. R1-R15 Reference Counter Setting Bits: 15 bits, R = 3 to 32767. [9] FC Phase Sense of the Phase Detector: Set to match the VCO polarity, H = + (Positive VCO transfer fur IDO Charge Pump Setting Bit: IDO HIGH = 3.8 mA, IDO LOW = 1 mA. TS Three-state Bit: Three-states the DO output for PLL2 and PLL1 when HIGH. Lock Detect: Directs the lock detect signal source pin 10. Pin 10 is HIGH with narrow low excursions of locked. When not locked, this pin is LOW. FO Frequency Out: This bit can be set to read out reference or programmable divider at the LD pin for test put PRE Prescaler Divide Bit: For PLL1 and PLL2: LOW = 32/33 and HIGH = 64/65. PD Power-down: LOW = power-up and HIGH = power-down. F _{IN} is at a high-impedance state, respective Both is disabled, forces three-state at DO outputs and phase comparators are disabled. The reference count disabled and the OSC input is high-impedance after both PLLs are powered down. Data can be input and in the power-down state. A1-A7 Swallow Counter Divide Ratio: A = 0 to 63 for both PLL1 and PLL2.	CNT1	CNT2	A1	A2	А3	A4	A5	A6	A7	B1	B2	В3	B4	B5	B6	B7	B8	В9	B10	B11	PRE	PD
CNT1, CNT2 Control Bits: Directs programming data to PLL1 or PLL2. R1-R15 Reference Counter Setting Bits: 15 bits, R = 3 to 32767. [9] FC Phase Sense of the Phase Detector: Set to match the VCO polarity, H = + (Positive VCO transfer fur IDO Charge Pump Setting Bit: IDO HIGH = 3.8 mA, IDO LOW = 1 mA. TS Three-state Bit: Three-states the DO output for PLL2 and PLL1 when HIGH. Lock Detect: Directs the lock detect signal source pin 10. Pin 10 is HIGH with narrow low excursions of locked. When not locked, this pin is LOW. FO Frequency Out: This bit can be set to read out reference or programmable divider at the LD pin for test put PRE Prescaler Divide Bit: For PLL1 and PLL2: LOW = 32/33 and HIGH = 64/65. PD Power-down: LOW = power-up and HIGH = power-down. F _{IN} is at a high-impedance state, respective Both is disabled, forces three-state at DO outputs and phase comparators are disabled. The reference count disabled and the OSC input is high-impedance after both PLLs are powered down. Data can be input and in the power-down state. A1-A7 Swallow Counter Divide Ratio: A = 0 to 63 for both PLL1 and PLL2.																						
R1–R15 Reference Counter Setting Bits: 15 bits, R = 3 to 32767. [9] FC Phase Sense of the Phase Detector: Set to match the VCO polarity, H = + (Positive VCO transfer fur IDO Charge Pump Setting Bit: ID _O HIGH = 3.8 mA, ID _O LOW = 1 mA. TS Three-state Bit: Three-states the D _O output for PLL2 and PLL1 when HIGH. LD Lock Detect: Directs the lock detect signal source pin 10. Pin 10 is HIGH with narrow low excursions verified locked. When not locked, this pin is LOW. FO Frequency Out: This bit can be set to read out reference or programmable divider at the LD pin for test put PRE Prescaler Divide Bit: For PLL1 and PLL2: LOW = 32/33 and HIGH = 64/65. PD Power-down: LOW = power-up and HIGH = power-down. F _{IN} is at a high-impedance state, respective Book is disabled, forces three-state at D _O outputs and phase comparators are disabled. The reference count disabled and the OSC input is high-impedance after both PLLs are powered down. Data can be input and in the power-down state. A1–A7 Swallow Counter Divide Ratio: A = 0 to 63 for both PLL1 and PLL2.	Bit(s)	Name)	Funct	ion																	
FC Phase Sense of the Phase Detector: Set to match the VCO polarity, H = + (Positive VCO transfer fur IDO Charge Pump Setting Bit: IDO HIGH = 3.8 mA, IDO LOW = 1 mA. TS Three-state Bit: Three-states the DO output for PLL2 and PLL1 when HIGH. LD Lock Detect: Directs the lock detect signal source pin 10. Pin 10 is HIGH with narrow low excursions where IDO locked. When not locked, this pin is LOW. FO Frequency Out: This bit can be set to read out reference or programmable divider at the LD pin for test put PRE Prescaler Divide Bit: For PLL1 and PLL2: LOW = 32/33 and HIGH = 64/65. PD Power-down: LOW = power-up and HIGH = power-down. FIN is at a high-impedance state, respective Book is disabled, forces three-state at DO outputs and phase comparators are disabled. The reference count disabled and the OSC input is high-impedance after both PLLs are powered down. Data can be input and in the power-down state. A1-A7 Swallow Counter Divide Ratio: A = 0 to 63 for both PLL1 and PLL2.	CNT1	, CNT2	2	Conti	rol Bit	ts: Dir	ects p	rogra	mmin	g data	to PL	L1 or	PLL2									
Charge Pump Setting Bit: ID _O HIGH = 3.8 mA, ID _O LOW = 1 mA. Three-state Bit: Three-states the D _O output for PLL2 and PLL1 when HIGH. Lock Detect: Directs the lock detect signal source pin 10. Pin 10 is HIGH with narrow low excursions velocked. When not locked, this pin is LOW. FO Frequency Out: This bit can be set to read out reference or programmable divider at the LD pin for test put PRE Prescaler Divide Bit: For PLL1 and PLL2: LOW = 32/33 and HIGH = 64/65. PD Power-down: LOW = power-up and HIGH = power-down. F _{IN} is at a high-impedance state, respective Both is disabled, forces three-state at D _O outputs and phase comparators are disabled. The reference count disabled and the OSC input is high-impedance after both PLLs are powered down. Data can be input and in the power-down state. A1-A7 Swallow Counter Divide Ratio: A = 0 to 63 for both PLL1 and PLL2.	R1–R	15		Refer	ence	Coun	ter Se	etting	Bits:	15 bit	s, R =	3 to 3	32767	[9]								
TS Three-state Bit: Three-states the D _O output for PLL2 and PLL1 when HIGH. Lock Detect: Directs the lock detect signal source pin 10. Pin 10 is HIGH with narrow low excursions of locked. When not locked, this pin is LOW. FO Frequency Out: This bit can be set to read out reference or programmable divider at the LD pin for test put PRE Prescaler Divide Bit: For PLL1 and PLL2: LOW = 32/33 and HIGH = 64/65. PD Power-down: LOW = power-up and HIGH = power-down. F _{IN} is at a high-impedance state, respective Both is disabled, forces three-state at D _O outputs and phase comparators are disabled. The reference count disabled and the OSC input is high-impedance after both PLLs are powered down. Data can be input and in the power-down state. A1-A7 Swallow Counter Divide Ratio: A = 0 to 63 for both PLL1 and PLL2.	FC			Phas	e Sen	se of	the P	hase	Detec	ctor: S	Set to	match	the V	′СО р	olarity	, H = ·	+ (Pos	itive \	/CO tr	ansfe	r func	tion).
Lock Detect: Directs the lock detect signal source pin 10. Pin 10 is HIGH with narrow low excursions velocked. When not locked, this pin is LOW. FO Frequency Out: This bit can be set to read out reference or programmable divider at the LD pin for test put PRE Prescaler Divide Bit: For PLL1 and PLL2: LOW = 32/33 and HIGH = 64/65. PD Power-down: LOW = power-up and HIGH = power-down. F _{IN} is at a high-impedance state, respective Both is disabled, forces three-state at D _O outputs and phase comparators are disabled. The reference count disabled and the OSC input is high-impedance after both PLLs are powered down. Data can be input and in the power-down state. A1–A7 Swallow Counter Divide Ratio: A = 0 to 63 for both PLL1 and PLL2.	IDO			Char	ge Pu	mp S	etting	Bit:	D _O HI	GH =	3.8 m	A, ID	O LOV	√ = 1 r	nA.							
locked. When not locked, this pin is LOW. FO Frequency Out: This bit can be set to read out reference or programmable divider at the LD pin for test put PRE Prescaler Divide Bit: For PLL1 and PLL2: LOW = 32/33 and HIGH = 64/65. PD Power-down: LOW = power-up and HIGH = power-down. F _{IN} is at a high-impedance state, respective B of is disabled, forces three-state at D _O outputs and phase comparators are disabled. The reference count disabled and the OSC input is high-impedance after both PLLs are powered down. Data can be input and in the power-down state. A1–A7 Swallow Counter Divide Ratio: A = 0 to 63 for both PLL1 and PLL2.	TS			Three	-state	e Bit:	Three	-state	s the	D _O ou	tput fo	or PLL	2 and	PLL1	wher	n HIGI	Н.					
PRE Prescaler Divide Bit: For PLL1 and PLL2: LOW = 32/33 and HIGH = 64/65. PD Power-down: LOW = power-up and HIGH = power-down. F _{IN} is at a high-impedance state, respective B of is disabled, forces three-state at D _O outputs and phase comparators are disabled. The reference count disabled and the OSC input is high-impedance after both PLLs are powered down. Data can be input and in the power-down state. A1–A7 Swallow Counter Divide Ratio: A = 0 to 63 for both PLL1 and PLL2.	LD											urce p	oin 10.	Pin 1	0 is H	IIGH v	vith na	arrow	low ex	cursio	ons wh	nen
PD **Power-down:* LOW = power-up and HIGH = power-down. F _{IN} is at a high-impedance state, respective B of is disabled, forces three-state at D _O outputs and phase comparators are disabled. The reference count disabled and the OSC input is high-impedance after both PLLs are powered down. Data can be input and in the power-down state. **A1-A7** **Swallow Counter Divide Ratio:* A = 0 to 63 for both PLL1 and PLL2.**	FO			Frequ	iency	Out:	This b	it can l	be set	to rea	d out	refere	nce or	progr	amma	ıble di	vider a	at the I	LD pin	for tes	st purp	oses.
is disabled, forces three-state at D _O outputs and phase comparators are disabled. The reference cound disabled and the OSC input is high-impedance after both PLLs are powered down. Data can be input and in the power-down state. A1–A7 Swallow Counter Divide Ratio: A = 0 to 63 for both PLL1 and PLL2.	PRE			Preso	caler l	Divide	Bit:	or PL	L1 ar	nd PLI	_2: LC)W = 3	32/33	and H	IGH =	64/6	5.					
	PD			is disa disabl	Power-down: LOW = power-up and HIGH = power-down. F_{IN} is at a high-impedance state, respective B counter is disabled, forces three-state at D_O outputs and phase comparators are disabled. The reference counter is disabled and the OSC input is high-impedance after both PLLs are powered down. Data can be input and latched in the power-down state.																	
	A1–A7	7		Swallow Counter Divide Ratio: A = 0 to 63 for both PLL1 and PLL2.																		
B1–B11 Programmable Counter Divide Ratio: B = 3 to 2047. ^[9]	B1–B1	11		Progi	ramm	able (Count	er Div	∕ide F	Ratio:	B = 3	to 204	17. ^[9]									

Table 3. F_0/LD Pin Truth Table

FO (Bit 22)	LD (Bit 21)	
PLL1	PLL2	PLL1	PLL2	F _O /LD Pin Output State
0	0	0	0	Disable
0	0	0	1	PLL2 Lock Detect
0	0	1	0	PLL1 Lock Detect
0	0	1	1	PLL1/PLL2 Lock Detect
0	1	Х	0	PLL2 Reference Divider Output
1	0	Х	0	PLL1 Reference Divider Output
0	1	Х	1	PLL2 Programmable Divider Output
1	0	Х	1	PLL1 Programmable Divider Output
1	1	0	1	PLL2 Counter Reset
1	1	1	0	PLL1 Counter Reset
1	1	1	1	PLL1/PLL2 Counter Reset

Notes:

- N. The MSB is loaded in first.
 Low count ratios may violate frequency limits of the phase detector.

Table 4. 7-Bit Swallow Counter (A) Truth Table^[10]

Divide Ratio A	A7	A6	A5	A4	А3	A2	A1
PLL1		•	•		-		•
0	Х	0	0	0	0	0	0
1	Х	0	0	0	0	0	1
:::	:::	:::	:::	:::	:::	:::	:::
62	Х	1	1	1	1	1	0
63	Х	1	1	1	1	1	1
PLL2							
0	Х	0	0	0	0	0	0
1	Х	0	0	0	0	0	1
:::	:::	:::	:::	:::	:::	:::	:::
62	Х	1	1	1	1	1	0
63	Х	1	1	1	1	1	1

Table 5. 11-Bit Programmable Counter (B) Truth Table^[11]

Divide Ratio B	B11	B10	В9	B8	B7	В6	B5	B4	В3	B2	B1
3	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	1	0	0
:::	:::	:::	:::	:::	:::	:::	:::	:::	:::	:::	:::
2046	1	1	1	1	1	1	1	1	1	1	0
2047	1	1	1	1	1	1	1	1	1	1	1

Table 6. 15-Bit Programmable Reference Counter (for PLL1 and PLL2) Truth Table^[11]

Divide Ratio R	R15	R14	R13	R12	R11	R10	R9	R8	R7	R6	R5	R4	R3	R2	R1
3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
:::	:::	:::	:::	:::	:::	:::	:::	:::	:::	:::	:::	:::	:::	:::	:::
32766	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
32767	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Ordering Information^[12]

Ordering Code	Package Name	Package Type	TR
CYW3335	ZI	20-pin TSSOP (0.173" wide)	Tape and Reel Option

Notes:

10. B is greater than or equal to A.11. Divide ratio less than 3 is prohibited. The divide ratio can be calculated using the following equation: $fvco = \{(P * B) + A\} * fosc / R where (A \le B)$

fvco: Output frequency of the external VCO.

fosc: The crystal reference oscillator frequency.

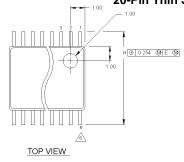
A: Preset divide ratio of the 7-bit swallow counter (0 to 127).

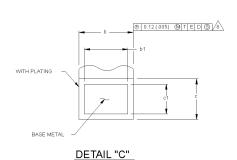
B: Preset ratio of the 11-bit programmable counter (3 to 2047).

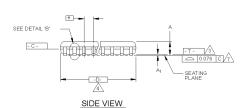
P: Preset divide ratio of the dual modulus prescaler (64/65 or 128/129).

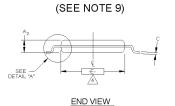
R: Preset ratio of the 14-bit programmable reference counter (3 to 16383).

The divide ratio N = (P * B) + A.


12. Operating temperature range: -40°C to +85°C.


Document #: 38-00922



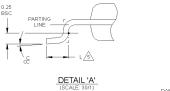

Package Diagram

20-Pin Thin Shrink Small Outline Package (TSSOP, 0.173" wide)

- 1. DIE THICKNESS ALLOWABLE IS 0.279±0.0127 (.0110±.0005 INCHES)
 2. DIMENSIONING & TOLERANCES PER ANSI,Y14 5M-1982.

 1. T* IS A REFERENCE DATUM.

- ↑ "T" IS A REFERENCE DATUM.


 ↑ "T" "S" "E" ARE REFERENCE DATUMS AND DO NOT INCLUDE WOLD FLASH OR PROTRUSIONS, AND ARE MEASURED AT THE PARTING LINE, MOLD FLASH OR MEASURED AT THE PARTING LINE, MOLD FLASH OR MEASURED AT THE PARTING LINE, MOLD FLASH OR EAST DEVELOPMENT OF TERMINAL.

 ► TOR SOLDERING TO A SUBSTRATE.

 ► TERMINAL POSITIONS ARE SHOWN FOR REFERENCE ONLY.

 ► TORMED LEADS SHALL BE PLANBAR WITH RESPECT TO ONE ANOTHER WITHIN OR STIMM AT SEARCH DAMBAR PROTRUSION SHALL BE QUIBTING FLASH ON THE LEAD WIDTH DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE QUIBTING AND AND AND AND AND AND AND AND AND SEARCE BETWEEN PROTRUSIONS AND AN ADJACENT LEAD TO BE O 14mm SEE DETAILS S" AND "C".

 DETAIL "C" TO BE DETERMINED AT 0.10 TO 25 MM FROM THE LEAD THE TO 1.0 TO 1.0 TO 35 MM FROM THE LEAD THE TO 1.0 TO

Physical Dimensions In Millimeters 20 Lead (0.173" Wide) TSSOP Package Order Number X 20" clear antistatic tubes, 76 units/tube JEDEC Outline MO-153

THIS TABLE IN MILLIMETERS

S	COMMON				NOTE	4			6
M B	DIMENSIONS			N _{OTE}	VARI-	D			N
°L	MIN.	NOM.	MAX.	T _E	ATIONS	MIN.	NOM.	MAX.	
Α			1.10		AA	2.90	3.00	3.10	8
A ₁	0.05	0.10	0.15		AB	4.90	5.00	5.10	14
A ₂	0.85	0.90	0.95		AC	4.90	5.00	5.10	16
b	0.19	-	0.30	8	AD	6.40	6.50	6.60	20
b1	0.19	0.22	0.25		AE	7.70	7.80	7.90	24
С	0.090	-	0.20		AF	9.60	9.70	9.80	28
c1	0.090	0.127	0.135						
D	SEE VARIATIONS			4					
E	4.30	4.40	4.50	4					
е	0.65 BSC								
Н	6.25	6.40	6.50						
L	0.50	0.60	0.70	5					
Ŋ	SEE VARIATIONS								
oc	0°	4°	8°						

THIS TABLE IN INCHES

C .	00111011								
S Y	COMMON DIMENSIONS			NOTE		4			6
M B				N _O	VARI-	D			N
ી	MIN.	NOM.	MAX.	T _E	ATIONS	MIN.	NOM.	MAX.	
Α			.0433		AA	.114	.118	.122	8
Αı	.002	.004	.006		AB	.193	.197	.201	14
A₂	.0335	.0354	.0374		AC	.193	.197	.201	16
b	.0075	-	.0118	8	AD	.252	.256	.260	20
b1	.0075	.0087	.0098		AE	.303	.307	.311	24
С	.0035	-	.0079		AF	.378	.382	.386	28
c1	.0035	.0050	.0053						
D	SEE VARIATIONS			4					
Е	.169	.173	.177	4					
е	.0256 BSC								
Н	.246	.252	.256						
L	.020	.024	.028	5					
Ŋ	SEE VARIATIONS			6					
œ	0°	4°	8°						

VARIATION AF IS DESIGNED BUT NOT TOOLED