

Serial Input PLL with 1．2－GHz Prescaler

Features

－Operating voltage 2.7 V to 5.5 V
－Operating frequency：up to 1.2 GHz with prescaler ratios of 64／65 and 128／129
－Lock detect feature
－Power－down mode
－20－pin TSSOP（Thin Shrink Small Outline Package）

Applications

－Wireless LAN
－Wireless communication handsets
－Base Stations
－Microcells

WB1215 PLL Block Diagram

Pin Configuration

Figure 1. Application Diagram Example - WB1215 1.2-GHz PLL

Pin Definitions

Pin Name	Pin No.	$\begin{gathered} \text { Pin } \\ \text { Type } \end{gathered}$	Pin Description
OSC_IN	1	1	Oscillator Input: This input has a $\mathrm{V}_{\mathrm{CC}} / 2$ threshold and CMOS logic level sensitivity.
NC	2		No Connect
OSC_OUT	3	O	Oscillator Output
V_{P}	4	P	Charge Pump Rail Voltage: This supply for charge pump. Must be $>\mathrm{V}_{\mathrm{CC}}$.
V_{CC}	5	P	Power Supply Connection for PLL: When power is removed from $V_{C C}$ all latched data is lost.
D_{O}	6	O	Charge Pump Output: The phase detector gain is $\mathrm{I}_{\mathrm{p}} / 2 \pi$. Sense polarity can be reversed by setting FC LOW (pin 15).
GND	7	G	Analog and Digital Ground Connection: This pin must be grounded.
LD	8	0	Lock Detect Pin: This output is HIGH with narrow LOW pulses when the loop is locked.
NC	9		No Connect
$\mathrm{F}_{\text {IN }}$	10	I	Input to Prescaler: Maximum frequency 1.2 GHz.
CLOCK	11	I	Data Clock Input: One bit of data is loaded into the Shift Register on the rising edge of this signal.
NC	12		No Connect
DATA	13	1	Serial Data Input
LE	14	I	Load Enable: On the rising edge of this signal, the data stored in the Shift Register is latched into the counters and configuration controls.
F_{C}	15	I	Phase Sense Control for Phase Detector with Internal Pull-up: When pulled LOW, the polarity of the Phase Detector is reversed.
BISW	16	0	Analog Switch Output: Connects to output of charge pump when LE is HIGH.
$\mathrm{F}_{\text {OUT }}$	17	0	Monitor Point for Phase Detector Input
\varnothing_{P}	18	0	External Charge Pump Output: Open drain N-Channel FET, pull-up resistor required.
PWDN	19	I	Power Down Pin with Internal Pull-up: When pin is HIGH, device is in normal state. When pin is LOW, device is in power-down mode. When device enters power-down mode the charge pump is in the three-state condition.
\varnothing_{R}	20	0	External Change Pump: (CMOS logic output).

Absolute Maximum Ratings

Stresses greater than those listed in this table may cause permanent damage to the device. These represent a stress rating
only. Operation of the device at these or any other conditions above those specified in the operating sections of this specification is not implied. Maximum conditions for extended periods may affect reliability.

Parameter	Rescription	Rating	V
V_{CC} or V_{P}	Power Supply Voltage	-0.5 to +6.5	V
$\mathrm{~V}_{\text {OUT }}$	Output Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	± 15
$\mathrm{I}_{\text {OUT }}$	Output Current	+260	mA
$\mathrm{~T}_{\mathrm{L}}$	Lead Temperature	-55 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	${ }^{\circ} \mathrm{C}$	

Handling Precautions

Devices should be transported and stored in antistatic containers.
These devices are static sensitive. Ensure that equipment and personnel contacting the devices are properly grounded.
Cover workbenches with grounded conductive mats.

Always turn off power before adding or removing devices from system.
Protect leads with a conductive sheet when handling or transporting PC boards with devices.
If devices are removed from the moisture protective bags for more than 36 hours, they should be baked at $85^{\circ} \mathrm{C}$ in a moisture free environment for 24 hours prior to assembly in less than 24 hours.

Recommended Operating Conditions

Parameter	Description	Test Condition	Rating	Unit
V_{CC}	Power Supply Voltage		2.7 to 5.5	V
$\mathrm{~V}_{\mathrm{P}}$	Charge Pump Voltage		V_{CC} to +5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature	Ambient air at 0 CFM flow	-40 to +85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics: $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{P}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Unless otherwise specified

Parameter	Description	Test Condition	Pin	Min.	Typ.	Max.	Unit
ICC	Power Supply Current		$V_{C C}$		4.5		mA
IPD	Power-down Current	Power-down, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	V_{CC}		6	100	$\mu \mathrm{A}$
$\mathrm{F}_{\text {IN }}$	Maximum Operating Frequency		$\mathrm{F}_{\text {IN }}$	1.2			GHz
Fosc	Oscillator Input Frequency	No load on OSC_OUT	OSC_IN			60	MHz
						25	MHz
PFIN	Input Sensitivity	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	$\mathrm{F}_{\text {IN }}$	-15		4	dBm
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		-10		4	dBm
$\mathrm{V}_{\text {OSC }}$	Oscillator Input Sensitivity		OSC_IN	0.5			$\mathrm{V}_{\mathrm{P}-\mathrm{P}}$
$\mathrm{I}_{\mathrm{IH}}, \mathrm{I}_{\text {IL }}$	Oscillator Input Current			-100		100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	DATA, CLOCK, LE	$\mathrm{V}_{\mathrm{CC}}{ }^{*} 0.8$			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage					$\mathrm{V}_{\mathrm{CC}}{ }^{*} 0.3$	V
$\mathrm{IIH}^{\text {H }}$	High Level Input Current			-10	1	10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current			-10	1	10	$\mu \mathrm{A}$
V_{OH}	High Level Output Voltage		$\mathrm{F}_{\mathrm{O}} / \mathrm{LD}$	2.2			V
V_{OL}	Low Level Output Voltage					0.4	V
$\mathrm{ID}_{\mathrm{O}(\mathrm{SO})}$	ID_{O}, Source Current	$\mathrm{V}_{\mathrm{P}}=3.0 \mathrm{~V}, \mathrm{VD}_{\mathrm{O}}=\mathrm{V}_{\mathrm{P}} / 2$	D_{0}		-3.2		mA
		$\mathrm{V}_{\mathrm{P}}=5.0 \mathrm{~V}, \mathrm{VD}_{\mathrm{O}}=\mathrm{V}_{\mathrm{P}} / 2$			-3.8		mA
$\mathrm{ID}_{\mathrm{OH}(\mathrm{SI})}$	ID ${ }_{\text {O }}$ High, Sink Current	$\mathrm{V}_{\mathrm{P}}=3.0 \mathrm{~V}, \mathrm{VD}_{\mathrm{O}}=\mathrm{V}_{\mathrm{P}} / 2$	D_{O}		3.2		mA
		$\mathrm{V}_{\mathrm{P}}=5.0 \mathrm{~V}, \mathrm{VD}_{\mathrm{O}}=\mathrm{V}_{\mathrm{P}} / 2$			3.8		mA
$\Delta \mathrm{ID}_{\mathrm{O}}$	ID ${ }_{\mathrm{O}}$ Charge Pump Sink and Source Mismatch	$\begin{aligned} & \mathrm{VD}_{\mathrm{O}}=\mathrm{V}_{\mathrm{P}} / 2 \\ & {\left[\mathrm{IID} \mathrm{O}_{(\mathrm{SI)}} \mathrm{I}-\mathrm{IID}_{\mathrm{O}(\mathrm{sO})} \mathrm{l}\right] /} \\ & \left.\left[1 / 2^{*}\left\{\mathrm{II} \mathrm{D}_{\mathrm{O}(\mathrm{SI})}\right]+\mathrm{lli} \mathrm{ID}_{\mathrm{O}(\mathrm{SO})} \mathrm{l}\right\}\right]^{*} 100 \% \end{aligned}$			5		\%
ID_{O} vs T	Charge Pump Current Variation vs. Temperature	$-40^{\circ} \mathrm{C}<\mathrm{T}<85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DO}}=\mathrm{V}_{\mathrm{P}} / 2^{[1]}$			5		\%
$1 \mathrm{D}_{\mathrm{O}-\mathrm{tri}}$	Charge Pump HighImpedance Leakage Current				± 2.5		nA

Note:

1. I_{\circ} VS T; Charge pump current variation vs. temperature.
$\left[I I D_{\mathrm{O}(\mathrm{SI}) @ \mathrm{~T}} \mathrm{I}-\mathrm{IID}_{\left.\left.\mathrm{O}(\mathrm{SI}) @ 25^{\circ} \mathrm{Cl}\right] / I \mathrm{D}_{\mathrm{O}} \mathrm{SI}\right) @ 25^{\circ} \mathrm{C}}{ }^{*} 100 \%\right.$ and
$\left[^{I I D} \mathrm{O}_{\mathrm{O}}(\mathrm{SO}) @ \mathrm{~T}^{\mathrm{l}}-\mathrm{IID}_{\mathrm{O}(\mathrm{SO}) @ 25^{\circ} \mathrm{C}} \mathrm{I}\right] / \mathrm{IID} \mathrm{O}_{\mathrm{O}}(\mathrm{SO}) @ 25^{\circ} \mathrm{C} \mathrm{I}^{*} 100 \%$.

Timing Waveforms

Phase Characteristics

For normal operation, the FC pins is used to select the output polarity of the phase detector. Both the internal and any external charge pump are affected.
Depending upon VCO characteristics, FC pin should be set accordingly:
When VCO characteristics are like (1), FC should be set HIGH or OPEN CIRCUIT:
When VCO characteristics are like (2), FC should be set LOW.
When FC is set HIGH or OPEN CIRCUIT, $F_{\text {out }}$ pin is set to the reference divider output, F_{r}. When FC is set LOW, $F_{\text {out }} p$ in is set to the programmable divider output F_{p}.

VCO Input Voltage
Phase Comparator Sense

Phase Detector Output Waveform

D_{O} Charge Pump Output Current Waveform

Timing Waveforms (continued)
Serial Data Input Timing Waveform ${ }^{[2,3,4,5]}$

Serial Data Input

Data is input serially using the DATA, CLOCK, and LE pins.
Two control bits direct data into the locations given in Table 1.
Table 1. Control Configuration

CNT	Function
1	Reference Counter: $\mathrm{R}=3$ to 16383, set prescaler ratio $\mathrm{PRE}=0: 128 / 129, \mathrm{PRE}=1: 64 / 65$
0	Program Counter: $\mathrm{A}=0$ to $127, \mathrm{~B}=3$ to 2047

Table 2. Shift Register Configuration ${ }^{[6]}$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Reference Counter and Configuration Bits																		
CNT	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	PRE			
Programmable Counter Bits																		
CNT	A1	A2	A3	A4	A5	A6	A7	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11
Bit(s) Name			Function															
CNT			Control Bit: Directs programming data to reference or programmable counters.															
R1-R14			Reference Counter Setting Bits: 14 bits, R = 3 to 16383. ${ }^{[7]}$															
PRE			Prescaler Divide Bit: LOW = 128/129 and HIGH = 64/65.															
A1-A7			Swallow Counter Divide Ratio: A = 0 to 127.															
B1-B11			Programmable Counter Divide Ratio: B = 3 to 2047. ${ }^{\text {[7] }}$															

Notes:

2. $t 1-t 5=50 \mu \mathrm{~s}>\mathrm{t}>0.5 \mu \mathrm{~s}$.
3. CLOCK may remain HIGH after latching in data.
4. DATA is shifted in with the MSB first.
5. For DATA definitions, refer to Table 2.
6. The MSB is loaded in first.
7. Low count ratios may violate frequency limits of the phase detector.

Table 3. 7-Bit Swallow Counter (A) Truth Table ${ }^{[8]}$

Divide Ratio A	A7	A6	A5	A4	A3	A2	A1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
$::$	$:::$	$::$	$::$	$::$	$:::$	$::$	$::$
126	1	1	1	1	1	1	0
127	1	1	1	1	1	1	1

Table 4. 11-Bit Programmable Counter (B) Truth Table ${ }^{[9]}$

Divide Ratio B	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1
3	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	1	0	0
$::$	$:::$	$:::$	$::$	$:::$	$:::$	$::$	\cdots	$::$	\cdots	$:::$	$::$
2046	1	1	1	1	1	1	1	1	1	1	0
2047	1	1	1	1	1	1	1	1	1	1	1

Table 5. 14-Bit Programmable Reference Counter Truth Table ${ }^{[9]}$

Divide Ratio R	R14	R13	R12	R11	R10	R9	R8	R7	R6	R5	R4	R3	R2	R1
3	0	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	0	1	0	0
$:::$	$::$	$:::$	$::$	$:::$	$:::$	$\cdots:$	$\cdots:$	$\cdots:$	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots
16382	1	1	1	1	1	1	1	1	1	1	1	1	1	0
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Ordering Information ${ }^{[10]}$

Ordering Code	Package Name	Package Type	TR
WB1215	X	20-pin TSSOP (0.173" wide)	Tape and Reel Option

Notes:

8. B is greater than or equal to A.
9. Divide ratio less than 3 is prohibit
10. Divide ratio less than 3 is prohibited. The divide ratio can be calculated using the following equation:
fvco $=\left\{\left(P^{*} B\right)+A\right\}^{*}$ fosc $/ R$ where $(A \leq B)$
fvco: Output frequency of the external VCO.
fosc: The crystal reference oscillator frequency.
A: Preset divide ratio of the 7-bit swallow counter (0 to 127).
B: Preset ratio of the 11-bit programmable counter (3 to 2047).
P: Preset divide ratio of the dual modulus prescaler ($64 / 65$ or $128 / 129$).
R: Preset ratio of the 14-bit programmable reference counter (3 to 16383).
The divide ratio $N=\left(P^{*} B\right)+A$.
11. Operating temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Document \#: 38-00865-A

Package Diagram

20-Pin Thin Shrink Small Outline Package (TSSOP, 0.173 " wide)

TOP VIEW

$\frac{\text { DETAIL "C" }}{\text { scall } 12011}$
(SEE NOTE 9)

END VIEW

NOTES:

1. DIE THICKNESS ALLOMAELE IS 0.279 ± 0.0127 (01100.0005 INCHES) B. "T"I IS AREFERENCE DATUM
2. "D"\& "E"ARE REFERENCE DATUMS ANDDO NOT MEASURED AT THE PARTING LINE, MOLD FLASH OR
A) PROTRUSIONS SHALL NOT EXCEEDO. 15 mm PER SIDE
3. FOR TERMLDERING TO A SUBSTRATE
A. FORMED LEADS SHALL BE PLANAR MITH RESPECT TO
© ONE ANOTHER WITHIN OOTGMm AT SEATING PLANE

AT MAXIMUM MMTERIAL CONDITION. DAMBAR CANNT BE
LOCAEDON THE LOWER RAIUS OR TE FOOT MINMUM
SPACEEEI
LOCATED DN THE LOWER RADIUS OR THE FOOT. MINMUMM
SPACE ETWEEN PROTRUSIONS AND AN AD.JCENT LEAD

4. CONTROLLING DIMENSION: MILLIMETERS

THIS PART IS COMPLLANT WMTH JEDEC SPECIFICATION MO-153.

$\frac{\text { DETAIL 'A' }}{(\text { SCALE: } 30 / 1)}$
DETAIL "B"
DAMEARPROTRUSION

Physical Dimensions In Millimeters 20 Lead (0.173" Wide) TSSOP Package Order Number X 20" clear antistatic tubes, 76 units/tube JEDEC Outline MO-153

THIS TABLE IN MILLIMETERS

THIS TABLE IN INCHES

${ }^{M}$	COMMON DIMENSIONS			${ }^{N_{0}}{ }_{T_{E}}$	NOTE	4			$\stackrel{6}{\mathrm{~N}}$
				VARI- ATIONS		D			
	MIN.	NOM.	MAX.		MIN.	NOM.	MAX.		
A			. 0433		AA	. 114	. 118	. 122	8
A_{1}	002	004	006		AB	. 193	197	. 201	14
A_{2}	. 0335	. 0354	. 0374		AC	. 193	197	201	16
b	. 0075	-	. 0118	8	AD	. 252	256	. 260	20
b1	. 0075	. 0087	. 0098		AE	. 303	. 307	. 311	24
c	. 0035	-	. 0079		AF	. 378	. 382	. 386	28
c1	. 0035	. 0050	. 0053						
D	SEE VARIATIONS			4					
E	169	173	177	4					
e	. 0256 BSC								
H	246	252	256						
L	020	024	028	5					
N	SEE VARIATIONS			6					
$\stackrel{\sim}{c}$	0°	4°	8°						

