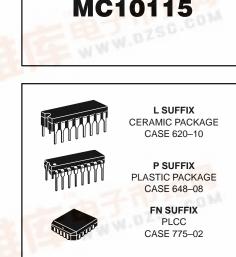
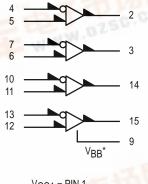
MOTOROLA SEMICONDUCTOR TECHNICAL DATA


Quad Line Receiver

The MC10115 is a quad differential amplifier designed for use in sensing differential signals over long lines. The base bias supply (V_{BB}) is made available at pin 9 to make the device useful as a Schmitt trigger, or in other applications where a stable reference voltage is necessary.

Active current sources provide the MC10115 with excellent common mode noise rejection. If any amplifier in a package is not used, one input of that amplifier must be connected to V_{BB} (pin 9) to prevent upsetting the current source bias network.



 $P_{D} = 110 \text{ mW typ/pkg (No Load)}$ $t_{pd} = 2.0 \text{ ns typ}$ $t_{r}, t_{f} = 2.0 \text{ ns typ } (20\%-80\%)$

捷多邦,专业PCB打样工厂,24小时加急出货

LOGIC DIAGRAM

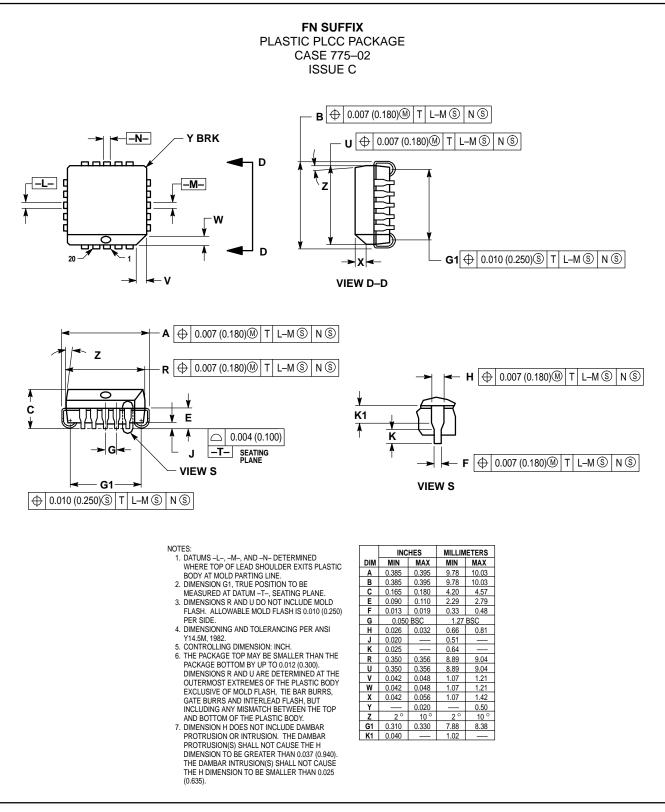
^{*}V_{BB} to be used to supply bias to the MC10115 only and bypassed (when used) with 0.01 μF to 0.1 μF capacitor to ground (0 V). V_{BB} can source < 1.0 mA. When the input pin with the bubble goes positive, the output goes negative.

DIP PIN ASSIGNMENT

Pin assignment is for Dual–in–Line Package. For PLCC pin assignment, see the Pin Conversion Tables on page 6–11 of the Motorola MECL Data Book (DL122/D).

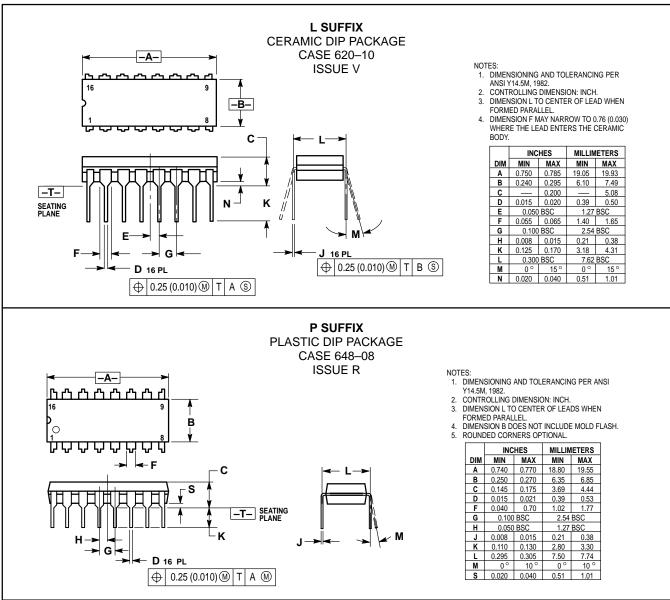
MC10115

ELECTRICAL CHARACTERISTICS


			Test Limits							
	Symbol	Pin Under Test	−30°C		+25°C			+85°C		
Characteristic			Min	Max	Min	Тур	Max	Min	Max	Unit
Power Supply Drain Current	ΙE	8		29			26		29	mAdc
Input Current	linH	4		150			95		95	μAdc
	I _{CBO}	4		1.5			1.0		1.0	μAdc
Output Voltage Logic 1	VOH	2	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	Vdc
Output Voltage Logic 0	VOL	2	-1.890	-1.675	-1.850		-1.650	-1.825	-1.615	Vdc
Threshold Voltage Logic 1	VOHA	2	-1.080		-0.980			-0.910		Vdc
Threshold Voltage Logic 0	VOLA	2		-1.655			-1.630		-1.595	Vdc
Reference Voltage	V _{BB}	9	1.420	1.280	-1.350		-1.230	1.295	-1.150	Vdc
Switching Times (50 Ω Load)										ns
Propagation Delay	^t 4–2+ t ₄₊₂ –	2 2	1.0 1.0	3.1 3.1	1.0 1.0		2.9 2.9	1.0 1.0	3.3 3.3	
Rise Time (20 to 80%)	t2+	2	1.1	3.6	1.1		3.3	1.1	3.7	
Fall Time (20 to 80%)	t2-	2	1.1	3.6	1.1		3.3	1.1	3.7	

ELECTRICAL CHARACTERISTICS (continued)

		TEST VOLTAGE VALUES (Volts)									
@ Test Temperature –30°C			V _{IHmax}	V _{ILmin}	VIHAmin	VILAmax	V _{BB}	V _{EE}			
			-0.890	-1.890	-1.205	-1.500	From	-5.2			
			+25°C	-0.810	-1.850	-1.105	-1.475	Pin	-5.2		
+85°C			-0.700	-1.825	-1.035	-1.440	9	-5.2			
Pin					TEST VOLTAGE APPLIED TO PINS LISTED BELOW						
Characteristic		Symbol	Under Test	V _{IHmax}	V _{ILmin}	VIHAmin	VILAmax	V _{BB}	VEE	(VCC) Gnd	
Power Supply Drain Current		١E	8		4,7,10,13			5,6,11,12	8	1, 16	
Input Current		linH	4	4	7,10,13			5,6,11,12	8	1, 16	
		ICBO	4		7,10,13			5,6,11,12	8,4	1, 16	
Output Voltage	Logic 1	Vон	2	7,10,13	4			5,6,11,12	8	1, 16	
Output Voltage	Logic 0	VOL	2	4	7,10,13			5,6,11,12	8	1, 16	
Threshold Voltage	Logic 1	VOHA	2		7,10,13		4	5,6,11,12	8	1, 16	
Threshold Voltage	Logic 0	VOLA	2		7,10,13	4		5,6,11,12	8	1, 16	
Reference Voltage		V _{BB}	9					5,6,11,12	8	1, 16	
Switching Times	(50 Ω Load)			Pulse In		Pulse Out			–3.2 V	+2.0 V	
Propagation Delay		t ₄₋₂₊ t ₄₊₂₋	2 2	4 4		2 2		5,6,11,12 5,6,11,12	8 8	1, 16 1, 16	
Rise Time	(20 to 80%)	t ₂₊	2	4		2		5,6,11,12	8	1, 16	
Fall Time	(20 to 80%)	t2-	2	4		2		5,6,11,12	8	1, 16	


Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

OUTLINE DIMENSIONS

MC10115

OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and **(A)** are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employee.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

