REF102

Precision VOLTAGE REFERENCE

FEATURES

－＋10V $\pm 0.0025 \mathrm{~V}$ OUTPUT
－VERY LOW DRIFT：2．5ppm／${ }^{\circ} \mathrm{C}$ max
－EXCELLENT STABILITY：
5ppm／1000hr typ
－EXCELLENT LINE REGULATION： 1ppm／V max
－EXCELLENT LOAD REGULATION： 10ppm／mA max
－LOW NOISE： $5 \mu \mathrm{Vp}-\mathrm{p}$ typ， 0.1 Hz to 10 Hz
－WIDE SUPPLY RANGE：11．4VDC to 36VDC
－LOW QUIESCENT CURRENT：1．4mA max
－PACKAGE OPTIONS：HERMETIC TO－99， PLASTIC DIP，SOIC

DESCRIPTION

The REF102 is a precision 10 V voltage reference．The drift is laser－trimmed to $2.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \max (\mathrm{CM}$ grade） over the industrial temperature range and $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max（SM grade）over the military temperature range． The REF102 achieves its precision without a heater． This results in low power，fast warm－up，excellent stability，and low noise．The output voltage is ex－ tremely insensitive to both line and load variations and can be externally adjusted with minimal effect on drift and stability．Single supply operation from 11.4 V to 36 V and excellent overall specifications make the REF102 an ideal choice for demanding instrumenta－ tion and system reference applications．

APPLICATIONS

－PRECISION－CALIBRATED VOLTAGE STANDARD
－D／A AND A／D CONVERTER REFERENCE
－PRECISION CURRENT REFERENCE
－ACCURATE COMPARATOR THRESHOLD REFERENCE
－DIGITAL VOLTMETERS
－TEST EQUIPMENT
－PC－BASED INSTRUMENTATION

RDF

SPECIFICATIONS

ELECTRICAL

At $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}$ power supply, unless otherwise noted.

PARAMETER	CONDITIONS	REF102A, R			REF102B, S			REF102C, M			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
OUTPUT VOLTAGE Initial vs Temperature ${ }^{(1)}$ vs Supply (Line Regulation) vs Output Current (Load Regulation) vs Time M Package P, U Packages ${ }^{(2)}$ Trim Range ${ }^{(3)}$ Capacitive Load, max	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{S}}=11.4 \mathrm{~V} \text { to } 36 \mathrm{~V} \\ \mathrm{I}_{\mathrm{L}}=0 \mathrm{~mA} \text { to }+10 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{L}}=0 \mathrm{~mA} \text { to }-5 \mathrm{~mA} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \end{gathered}$	9.99 ± 3	$\begin{gathered} 5 \\ 20 \\ 1000 \end{gathered}$	$\begin{gathered} 10.01 \\ 10 \\ 2 \\ \\ 20 \\ 40 \end{gathered}$	9.995 *	* *	$\begin{gathered} 10.005 \\ 5 \\ 1 \\ 10 \\ 20 \end{gathered}$	9.9975 *	* *	$\begin{gathered} 10.0025 \\ 2.5 \\ 1 \\ \\ 10 \\ 20 \end{gathered}$	V $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ppm/V ppm/mA ppm/mA ppm/1000hr ppm/1000hr \% pF
NOISE	(0.1Hz to 10 Hz)		5			*			*		$\mu \mathrm{Vp}$-p
OUTPUT CURRENT		+10, -5			*			*			mA
INPUT VOLTAGE RANGE		+11.4		+36	*		*	*		*	V
QUIESCENT CURRENT	$\left(\mathrm{I}_{\text {OUT }}=0\right)$			+1.4			*			*	mA
WARM-UP TIME ${ }^{(4)}$	(To 0.1\%)		15			*			*		$\mu \mathrm{S}$
TEMPERATURE RANGE Specification REF102A, B, C REF102R, S		$\begin{aligned} & -25 \\ & -55 \end{aligned}$		$\begin{gathered} +85 \\ +125 \end{gathered}$	$\begin{aligned} & * \\ & * \end{aligned}$		$\begin{aligned} & * \\ & * \end{aligned}$	*		*	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

* Specifications same as REF102A/R.

NOTES: (1) The "box" method is used to specify output voltage drift vs temperature. See the Discussion of Performance section. (2) Typically $5 \mathrm{ppm} / 1000 \mathrm{hrs}$ after 168 hr powered stabilization. (3) Trimming the offset voltage affects drift slightly. See Installation and Operating Instructions for details. (4) With noise reduction pin floating. See Typical Performance Curves for details.

[^0]ORDERING INFORMATION

PRODUCT	PACKAGE	TEMPERATURE RANGE	MAX INITIAL ERROR (mV)	MAX DRIFT (ppm/ $\left./{ }^{\circ} \mathrm{C}\right)$
REF102AU	8-Pin SOIC	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	± 10	± 10
REF102AP	8-Pin Plastic DIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
REF102BP	8-Pin Plastic DIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	± 10	± 10
REF102AM	Metal TO-99	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	± 5	± 5
REF102BM	Metal TO-99	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	± 10	± 10
REF102CM	Metal TO-99	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	± 5	
REF102RM	Metal TO-99	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	± 5	
REF102SM	Metal TO-99	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	± 2.5	± 2.5

PIN CONFIGURATIONS

ELECTROSTATIC DISCHARGE SENSITIVITY

ABSOLUTE MAXIMUM RATINGS

Input Voltage .. +40V	
Operating Temperature	
P, U	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	
P, U	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
M	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) ... $+300^{\circ} \mathrm{C}$	
(SOIC, 3s)	. $+260^{\circ} \mathrm{C}$
Short-Circuit Protection to Common	.. Continuous

PACKAGE INFORMATION

PRODUCT	PACKAGE	PACKAGE DRAWING NUMBER ${ }^{(1)}$
REF102AU	8-Pin SOIC	182
REF102AP	8-Pin Plastic DIP	006
REF102BP	8-Pin Plastic DIP	006
REF102AM	Metal-TO-99	001
REF102BM	Metal-TO-99	001
REF102CM	Metal-TO-99	001
REF102RM	Metal-TO-99	001
REF102SM	Metal-TO-99	001

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

TYPICAL PERFORMANCE CURVES

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}$, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}$, unless otherwise noted.

Low Frequency Noise (1s /div) (See Noise Test Circuit)

Noise Test Circuit.

THEORY OF OPERATION

Refer to the diagram on the first page of this data sheet. The 10 V output is derived from a compensated buried zener diode DZ_{1}, op amp A_{1}, and resistor network $\mathrm{R}_{1}-\mathrm{R}_{6}$.
Approximately 8.2 V is applied to the non-inverting input of A_{1} by $D Z_{1} . R_{1}, R_{2}$, and R_{3} are laser-trimmed to produce an exact 10 V output. The zener bias current is established from the regulated output voltage through $\mathrm{R}_{4} . \mathrm{R}_{5}$ allows usertrimming of the output voltage by providing for small external adjustment of the amplifier gain. Because the TCR of R_{5} closely matches the TCR of $\mathrm{R}_{1}, \mathrm{R}_{2}$ and R_{3}, the voltage trim has minimal effect on the reference drift. The output voltage noise of the REF102 is dominated by the noise of the zener diode. A capacitor can be connected between the Noise Reduction pin and ground to form a low-pass filter with R_{6} and roll off the high-frequency noise of the zener.

DISCUSSION OF PERFORMANCE

The REF102 is designed for applications requiring a precision voltage reference where both the initial value at room temperature and the drift over temperature are of importance to the user. Two basic methods of specifying voltage reference drift versus temperature are in common usage in the industry-the "butterfly method" and the "box method." The REF102 is specified with the more commonly used "box method." The "box" is formed by the high and low specification temperatures and a diagonal, the slope of which is equal to the maximum specified drift.
Since the shape of the actual drift curve is not known, the vertical position of the box is not exactly known either. It is, however, bounded by $\mathrm{V}_{\text {UPPER BOUND }}$ and $\mathrm{V}_{\text {LOwER bound }}$ (see Figure 1). Figure 1 uses the REF102CM as an example. It has a drift specification of $2.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum and a specification temperature range of $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The "box" height, V_{1} to V_{2}, is 2.75 mV .

FIGURE 1. REF102CM Output Voltage Drift.

INSTALLATION AND OPERATING INSTRUCTIONS

BASIC CIRCUIT CONNECTION

Figure 2 shows the proper connection of the REF102. To achieve the specified performance, pay careful attention to layout. A low resistance star configuration will reduce voltage errors, noise pickup, and noise coupled from the power supply. Commons should be connected as indicated being sure to minimize interconnection resistances.

NOTES: (1) Lead resistances here of up to a few ohms have negligible effect on performance. (2) A resistance of 0.1Ω in series with these leads will cause a 1 mV error when the load current is at its maximum of 10 mA . This results in a 0.01% error of 10 V .

FIGURE 2. REF102 Installation.

OPTIONAL OUTPUT VOLTAGE ADJUSTMENT

Optional output voltage adjustment circuits are shown in Figures 3 and 4 . Trimming the output voltage will change the voltage drift by approximately $0.008 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ per mV of trimmed voltage. In the circuit in Figure 3, any mismatch in TCR between the two sections of the potentiometer will also affect drift, but the effect of the $\triangle T C R$ is reduced by a factor of five by the internal resistor divider. A high quality potentiometer, with good mechanical stability, such as a cermet, should be used. The circuit in Figure 3 has a minimum trim range of $\pm 300 \mathrm{mV}$. The circuit in Figure 4 has less range but provides higher resolution. The mismatch in TCR between R_{S} and the internal resistors can introduce some slight drift. This effect is minimized if R_{S} is kept significantly larger than the $50 \mathrm{k} \Omega$ internal resistor. A TCR of $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ is normally sufficient.

FIGURE 3. REF102 Optional Output Voltage Adjust.

FIGURE 4. REF102 Optional Output Voltage Fine Adjust.

OPTIONAL NOISE REDUCTION

The high-frequency noise of the REF102 is dominated by the zener diode noise. This noise can be greatly reduced by connecting a capacitor between the Noise Reduction pin and ground. The capacitor forms a low pass filter with R_{6} (refer to the figure on the first page of the data sheet) and attenuates the high-frequency noise generated by the zener. Figure 5 shows the effect of a $1 \mu \mathrm{~F}$ noise reduction capacitor on the high frequency noise of the REF102. R_{6} is typically $7 \mathrm{k} \Omega$ so the filter has a -3 dB frequency of about 22 Hz . The result is a reduction in noise from about $800 \mu \mathrm{Vp}$-p to under 200μ Vp-p. If further noise reduction is required, use the circuit in Figure 14.

FIGURE 5. Effect of $1 \mu \mathrm{~F}$ Noise Reduction Capacitor on Broadband Noise ($\mathrm{f}_{-3 \mathrm{~dB}}=1 \mathrm{MHz}$).

APPLICATIONS INFORMATION

High accuracy, extremely low drift, outstanding stability, and low cost make the REF102 an ideal choice for all instrumentation and system reference applications. Figures 6 through 14 show a variety of useful application circuits.

FIGURE 6. -10V Reference Using a) Resistor or b) OPA27.

FIGURE 7. +10 V Reference With Output Current Boosted to: a) $\pm 20 \mathrm{~mA}, \mathrm{~b})+100 \mathrm{~mA}$, and c) $\mathrm{I}_{\mathrm{L}(\text { (TYP) }}+10 \mathrm{~mA},-5 \mathrm{~A}$.

FIGURE 8. Strain Gauge Conditioner for 350Ω Bridge.

See AB-005 for more details.
FIGURE 9. $\pm 10 \mathrm{~V}$ Reference.

FIGURE 10. Positive Precision Current Source.

NOTES: (1) REF102s can be stacked to obtain voltages in multiples of 10 V . (2) The supply voltage should be between $10 n+1.4$ and $10 n+26$ where n is the number of REF102s. (3) Output current of each REF102 must not exceed its rated output current of $+10,-5 \mathrm{~mA}$. This includes the current delivered to the lower REF102

FIGURE 11. Stacked References.

FIGURE 12. $\pm 5 \mathrm{~V}$ Reference.

FIGURE 13. +5 V and +10 V Reference.

FIGURE 14. Precision Voltage Reference with Extremely Low Noise.

[^0]: The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

