Stepping motor driver **BA6343**

The BA6343 is a driver designed to drive the stepping motors used in printers and fax machines.

Applications

Printers and facsimiles

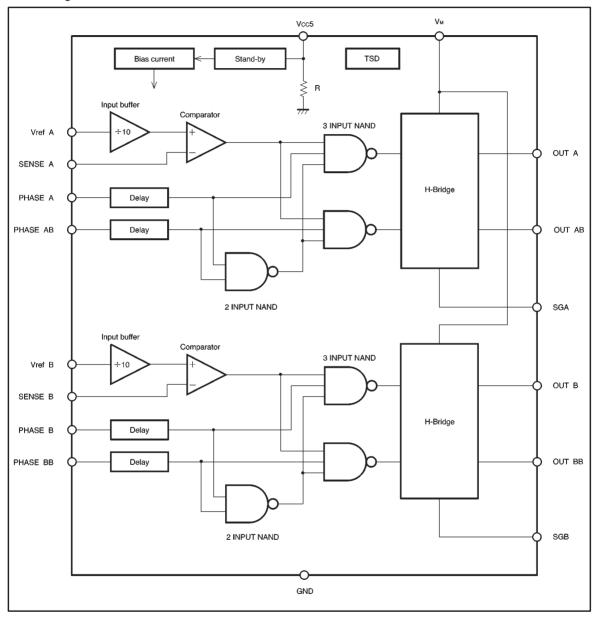
Features

- 1) Micro-step drive compatible.
- 2) Overheating protection circuit on chip.

Wide operating voltage range (7V to 33V).

(Ta = 25°C) Symbol	Limits	
	Limits	
		Unit
Vм	Vcc5~36	V
Vcc5	− 0.01∼ + 7	V
Vanalg	− 0.03∼ + 7	V
Vlogic	− 0.03∼ + 7	V
Pd	1700*1	mW
Κθ	13.6	mW / ℃
T _i	150	°C
Topr	0~75	°C
Tstg	−55~+150	°C
Іоит	±500*2	mA
	Vcc5 Vanalg Vlogic Pd Kθ Ti Topr Tstg	Vcc5 $-0.01 \sim +7$ Vanalg $-0.03 \sim +7$ Vlogic $-0.03 \sim +7$ Pd $1700*1$ K θ 13.6 Tj 150 Topr $0 \sim 75$ Tstg $-55 \sim +150$

^{*1} Reduced by 13.6mW for each increase in Ta of 1℃ over 25℃ (when mounted on a 70mm \times 70mm \times 1.6mm glass epoxy board).


■Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Limits	Unit
Power supply voltage 1	Vм	7~33	V
Power supply voltage 2	Vcc5	5.0±10%	V
Analog input voltage	Vanalg	−0.03∼Vcc5	V
Logic input voltage	Vlogic	−0.03∼Vcc5	V

^{*2} Should not exceed Pd or ASO values.

■Block diagram

Pin descriptions

Pin No.	Pin name	Function
1	OUT A	Motor output A
2	OUT AB	Motor output AB
3	SGA	Ground for channel A output block (connect resistor for detecting channel A output current)
4	SENSE A	Channel A detect signal input (channel A output current)
5	GND	GND
6	GND	GND
7	VrefA	Channel A reference voltage input (channel A output current setting)
8	PHASE A	Logic input A
9	PHASE AB	Logic input AB
10	Vcc5	Power supply
11	PHASE BB	Logic input BB
12	PHASE B	Logic input B
13	VrefB	Channel B reference voltage input (channel B output current setting)
14	SENSE B	Channel B detect signal input (channel B output current)
15	GND	GND
16	GND	GND
17	SGB	Ground for channel B output block (connect resistor for detecting channel B output current)
18	OUT BB	Motor output BB
19	OUT B	Motor output B
20	Vм	Motor power supply

●Input / output circuits

(1) Logic and analog inputs

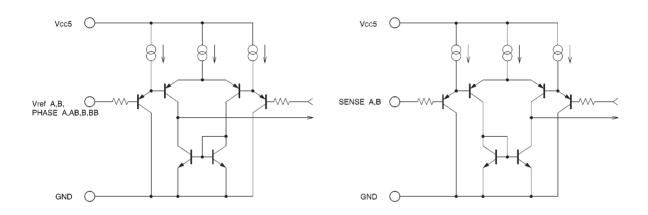


Fig.1 Logic and analog input circuits

(2) H-bridge output

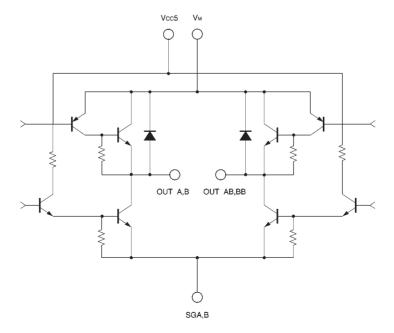


Fig.2 H-bridge output circuit

●Electrical characteristics (unless otherwise noted, Ta = 25°C, V_M = 13V, and V_{CC} = 5V)

(1) DC characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Vм current at standby	Moff	_	0	10	μΑ	Vcc5=0V
Vм current when operating	Mon	_	8.0	14.0	mA	V _{phA} =V _{ph5} ="H"
Circuit current	ICC5on	_	32	60	mA	V _{phA} =V _{phB} ="H"
Vcc5 input high level voltage	Vсс5н	4.5	5.0	5.5	V	
Vcc5 input low level voltage	V _{CC5L}	-0.01	_	0.4	V	Iм≦10 μ A
Vref input voltage range	Vref	Vcoff	_	Vcc5-2	٧	chA, B
Vref input bias current	Iref	_	_	0.25	μΑ	Vref=0V, chA, B
Comparator off reference voltage	Vcoff	0.1	0.2	0.3	٧	V _{sen} =0V, chA, B
SENSE pin threshold voltage	Vsen	0.23	0.25	0.27	٧	Vref=2.5V, chA, B
SENSE input bias current	Isen	_	_	1.0	μΑ	V _{sen} =0V, chA, B
Logic input high level voltage	VINH	2.0	_	Vcc5	٧	phA, AB, B, BB
Logic input low level voltage	VINL	-0.03	_	0.8	٧	phA, AB, B, BB
Logic input high level current	linh	_	_	0.25	μΑ	V _{ph} =Vcc5, phA, AB, B, BB
Logic input low level current	linl	_	_	1.0	μΑ	V _{ph} =0V, phA, AB, B, BB
Output total saturation voltage	V _{sat}	_	1.2	1.6	٧	lo=350mA, phA, AB, B, BB
Output cutoff current	loff	_	_	0.25	μΑ	V _{ph} ="L", chA, B
Output high level clamp voltage	Vсн	_	_	1.6	٧	lo=350mA, phA, AB, B, BB
Output low level clamp voltage	VcL	_	_	1.6	٧	lo=350mA, phA, AB, B, BB

(2) AC characteristics (channels A, AB, B, BB, and $R_L = 100\Omega$)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Output turn on delay	Tdon	_	_	3.0	μS	Vref=2.5V, V _{sen} =0.5V→0V
Output turn off delay	Tdoff	_	_	7.0	μS	Vref=2.5V, V _{sen} =0V→0.5V
Amp response time for Vref	Tdamp	_	_	12.0	μS	V _{sen} =0.25V, Vref=0V→3V
PHASE delay time	Tdph	_	_	3.0	μs	V _{ph} =0V→5V

ONot designed for radiation resistance.

Circuit operation

Input / output truth table

Inj	out	Output		
PHASE A, (B)	PHASE A, (BB)	OUT AB, (BB)		
L	L	Z	Z	
Н	L	н	L	
L	Н	L	н	
Н	Н	Z	Z	

Setting: VrefA=VrefB=high level
SENSE A=SENSE B=low level

Z: high impedance

Application example

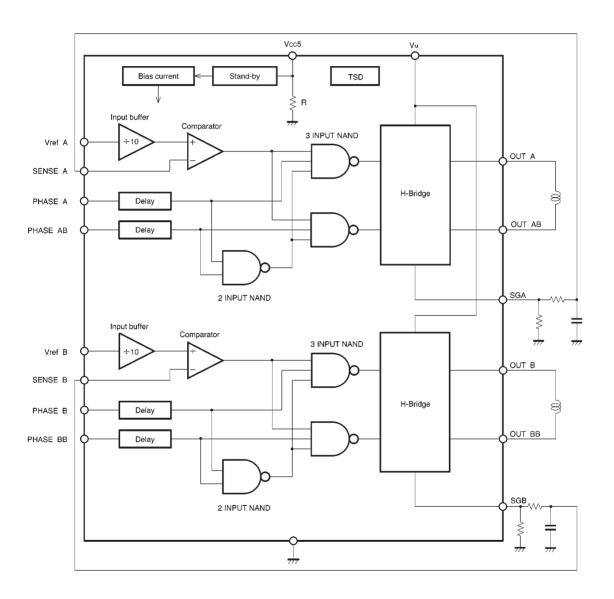


Fig.3

Operation notes

(1) Power supply voltages 1 and 2 (V_M and V_{CC})

The rise and fall order for the power supply voltages 1 and 2 (V_M and $V_{CC}5$) is as follows.

Rise: power supply voltage 1 (V_M) on \rightarrow power supply voltage 2 ($V_{CC}5$) on

Fall: power supply voltage 2 (Vcc5) off \rightarrow power supply voltage 1 (V_M) off

(2) Logic and analog input pins

Due to the circuit construction, when the logic and analog input pins are open, it is equivalent to a high-level input.

(3) Thermal shutdown (TSD)

•Electrical characteristics curve

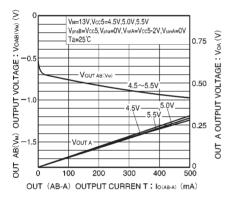
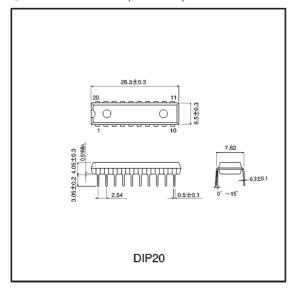



Fig.4 IO(AB-A) vs. VOAB(VM) and VOA

External dimensions (Units: mm)

At $Tj = 150^{\circ}C$ (min.), all logic input voltages go low (channels A, AB, B and BB).

Therefore, the outputs (OUTA, AB, B and BB) all go high impedance.

The TSD has approximately 35°C of hysteresis.

(4) Vcc5 pin

When Vcc5 is open, it is internally pulled down to ground via a resistor ($20k\Omega$ (Typ.)).

(5) Heat sink

Be certain to connect the heatsink to GND.