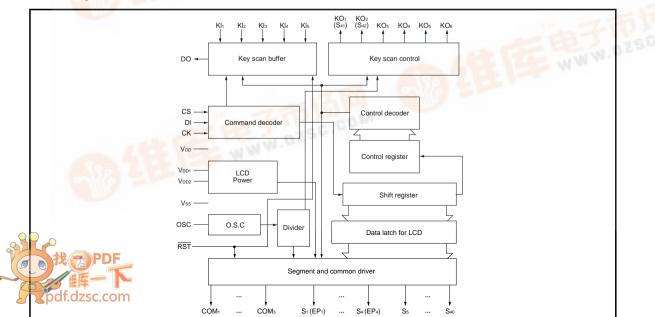


Driver for segmented LCD module with key input function BU9768AK / BU9768AKV

The BU9768AK / BU9768AKV are man-machine interface ICs with key input, designed for portable multimedia terminals and other devices. They can be used as drivers for operation mode display LCD panels on portable terminals, household products, car stereos, and other appliances. Up to 126 cells can be displayed, and up to 30 keys can be input.

Also, a maximum of four outputs are possible using expansion pins. (The number of outputs for each pin can be changed using control codes.)


Applications

Portable multi-media terminals, POS terminals, wireless radios, telephones, cameras, VCRs, movie projectors, car stereos, others

Features

- 1) Drive of up to 42 segment outputs, three common outputs, and up to 126 cells is possible.
- 2) Up to 30 keys can be input.
- 3) A maximum of four pins can be used as output pins for expansion.
- 4) 1 / 3 duty drive.
- 5) A bias of 1 / 2 or 1 / 3 can be selected for the LCD display power supply.

Block diagram

BU9768AK / BU9768AKV

Pin assignments

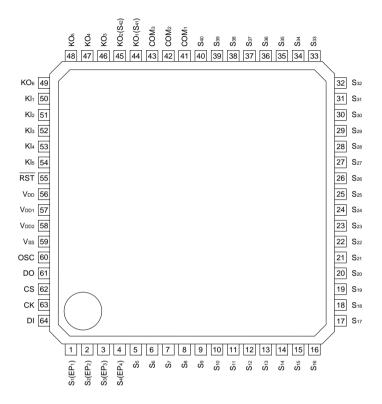


Fig.1

Pin descriptions

Pin No. Pin name I/OFunction Processing if not used Output pins for switching between segment output and expansion pin output. Switched using control 1~4 S1 (EP1) ~ S4 (EP4) 0 OPFN codes Po and P1. When expansion pins are used. these output set data (1 or 0). Segment output pins. These output waveforms 5~40 S5 ~ S40 0 OPEN correspond to serial data input from DI. Common output pins 41 ~ 43 COM1 ~ COM3 0 OPEN Output pins for switching between key scan output 44.45 KO1 (S41), KO2 (S42) 0 and segment output. Switching is enabled using OPEN control codes K₀ and K₁. 46 ~ 49 KO3 ~ KO6 0 Key scan output pins OPEN $50 \sim 54$ KI1 ~ KI5 Т Key scan input pins OPEN Reset input pin for Low Active state. Segment and common outputs are fixed at LOW level while RST is Vnn RST LOW, and all displays disappear. Data for LCD 55 L. displays is not reset. All data in the key scan buffer is cleared. Internal reference voltage for LCD. When using in the 57 VDD1 1 / 2 bias mode, this should be connected to VDD2. Internal reference voltage for LCD. When using in the 58 VDD2 1/2 bias mode, this should be connected to VDD1. 60 OSC Oscillator pin for segment / common alternating waveforms _ ____ Key buffer data output pin. After a key scan has been completed, if key input existed, this changes to LOW. Also, if the key data communications command is 61 DO 0 OPEN input, the contents of the key buffer are output as serial data. Since this is open drain output, it should be used with a pull-up resistor. 62 CS Т Chip select input pin Vss Synchronous clock input pin for data transmission 63 CK Т Vss 64 DI L Vss Data input pin for LCD display

Absolute maximum ratings (Ta = 25°C)

Para	meter	Symbol	Pin	Limits	Unit
Power sup	oply voltage	Vdd	Vdd	- 0.3 ~ + 7.0	V
Input volta	ge	Vin	RST, OSC, CS, CK, DI, KI₁ ~ KI₅	$-0.3 \sim V_{DD} + 0.3$	V
Output vol	tage	Vout	OSC, DO, KO1 ~ KO6, EP1 ~ EP4	V	
		louт (1)	COM ₁ ~ COM ₃	3	mA
Output out	rant	louт (2)	EP1 ~ EP4	5	mA
Output cu	rent	louт (3)	S1 ~ S40	300	μΑ
		louт (4)	KO1 ~ KO6	1	mA
Power	BU9768AK	n		800	
dissipation	BU9768AKV	Pd	_	750	mW*
Storage temperature		Tstg		- 55 ~ + 125	°C

* This is the maximum voltage which may be applied to the Vss pin.

BU9768AK / BU9768AKV

Parameter	Symbol	Pin	Min.	Тур.	Max.	Unit
Power supply voltage	Vdd	Vdd	+ 4.5	—	+ 6.0	V
Operating temperature	Topr	—	- 40	_	+ 85	°C

Recommended operating conditions (Ta = 25°C)

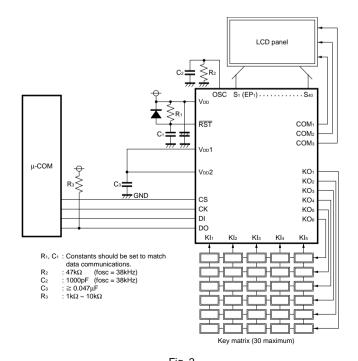
•Electrical characteristics (unless otherwise noted, V_{DD} = 4.5V to 6.0V, Ta = 25°C)

Parameter	Symbol	Pin	Min.	Тур.	Max.	Unit	Conditions
Input high level	Vін (1)	RST, CS, CK, DI	0.8Vdd	_	Vdd	V	
voltage	Vін (2)	Kl1 ~ Kl5	0.6Vdd	_	Vdd	V	
Input low level	Vı∟ (1)	RST, CS ,CK, DI	0	_	0.2Vdd	V	
voltage	Vı∟ (2)	Kl1 ~ Kl5	0	_	0.2Vdd	V	
Input high level current	Ін	RST, CS, CK, DI	_	_	6.0	μΑ	V1 = VDD
Input low level current	IIL	RST, CS, CK, DI	_	_	6.0	μΑ	V1 = Vss
Input floating voltage	Vif	Kl1 ~ Kl5	_	_	0.05Vdd	V	
Pull-down resistance	Rpd	Kl1 ~ Kl5	50	100	200	kΩ	VDD = 5.0V
Output off leakage current	Ioffh	DO	_	_	6.0	μΑ	Vo = Vdd
	Vон (1)	KO1 ~ KO6	Vdd - 2.0	Vdd - 1.0	Vdd – 0.5	V	lo = - 1mA
Output high level	Vон (2)	EP1 ~ EP4	Vdd - 1.5	_	_	V	lo = - 300μA
voltage	Vон (3)	S1 ~ S42	_	Vdd - 1.0	_	V	lo = - 20μA
	Vон (4)	COM1 ~ COM3	_	Vdd - 1.0	—	V	lo = - 100μA
	Vol (1)	KO1 ~ KO6	0.5	1.0	2.0	V	Ιο = 50μΑ
Output low level	Vol (2)	EP1 ~ EP4	_	_	1.0	V	Ιο = 300μΑ
	Vol (3)	S1 ~ S42	_	1.0	_	V	lo = 20μA
voltage	Vol (4)	COM1 ~ COM3	_	1.0	_	V	lo = 100μA
	Vol (5)	DO	_	0.2 (200Ω)	0.5 (500Ω)	V	lo = 1mA
	Vmid (1)	COM1 ~ COM3	1 / 2Vdd - 1.0	_	1 / 2Vdd + 1.0	V	1 / 2bias
Outrast internet lists	Vmid (2)	S1 ~ S42	2 / 3Vdd – 1.0	_	2/3Vdd + 1.0	V	1 / 3bias
Output intermediate	Vmid (3)	COM1 ~ COM3	2/3Vdd - 1.0	_	2/3Vdd + 1.0	V	1 / 3bias
level voltage	Vmid (4)	S1 ~ S42	1/3Vdd - 1.0	_	1/3Vdd + 1.0	V	1 / 3bias
	VMID (5)	COM1 ~ COM3	1 / 3Vdd - 1.0	_	1 / 3Vdd + 1.0	V	1 / 3bias
Dever ever her ever	IDD1	_	_	30	70	μΑ	In sleep mode
Power supply current	IDD2	_	_	200	500	μΑ	fosc = 38kHz

 \bigcirc Not designed for radiation resistance.

BU9768AK / BU9768AKV

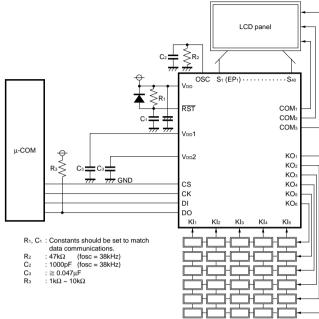
Standard ICs


Parameter	Symbol	Pin	Min.	Тур.	Max.	Unit	•
Rise time	tu	CS, CK, DI		_	300	ns	
Fall time	ta	CS, CK, DI	_	_	300	ns	-
Data setup time	ts (1)	CK, DI	100	_	_	ns	
Data hold time	th (1)	CK, DI	100	_	—	ns	
CS wait time	tcw	CS, CK	100		_	ns	
CS setup time	ts (2)	CS, CK	100		_	ns	
CS hold time	th (2)	CS, CK	100		_	ns	
CK HIGH level time	tн	СК	100	_	_	ns	
CK LOW level time	t∟	СК	100	_	—	ns	
D0 output delay time	tai	DO	_	_	200 (Note 1)	ns	
Oscillation guaranteed range	fosc	OSC	19	38	76	kHz	(No

●AC timing characteristics (V_{DD} = 4.5V to 6.0V, Ta = 25°C)

(Note 1) Since DO is open drain output, the output delay time varies depending on the pull-up resistance. (Note 2) Values measured for attachments of $R = 47k\Omega$, C = 1000pF.

Application example


(1 / 2 bias mode)

* The pull-up resistor value should be set to a value so that the waveform is not destroyed by the wiring capacitance

(1 / 3 bias mode)

BU9768AK / BU9768AKV

Key matrix (30 maximum)

Fig. 3

(1 / 2 bias mode)

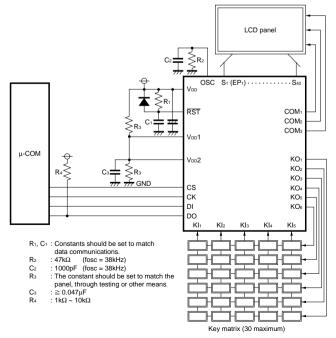


Fig. 4

* The pull-up resistor value should be set to a value so that the waveform is not destroyed by the wiring capacitance

BU9768AK / BU9768AKV

(1 / 3 bias mode)

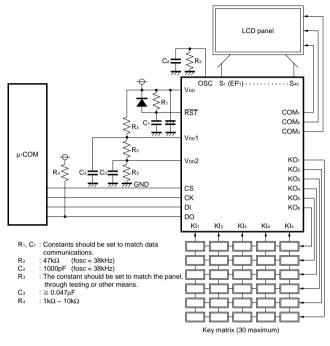


Fig. 5

* The pull-up resistor value should be set to a value so that the waveform is not destroyed by the wiring capacitance or other factors.

Circuit operation

(1) Data communications

The BU9768AK / BU9768AKV are able to receive LCD display data output from the controller, as well as the results of key scans.

1) LCD display data output (from controller)

When LCD data is output, the command code "42" must be output at the beginning of the data. Fig. 6 shows an example of LCD display data output.

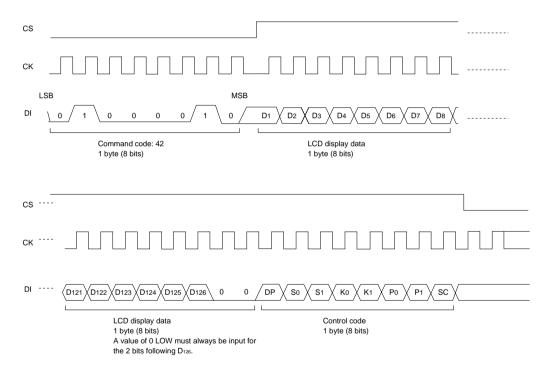


Fig. 6 Example of LCD display data transmission

- ① During the time that CS is LOW, the command code "42" is input synchronized to the CK clock, and CS is then set to HIGH before the rise of the next CK clock.
- 2 The LCD data is sent, and 0 (LOW level) is input for the two bits following D_{126.}
- 3 An 8-bit control code is input, and CS is set to LOW.

BU9768AK / BU9768AKV

COM₁

D66

D69

D72

D75

D78

D81

D84

D87

D90

D93

D96

D99 D102

D105

D108

D111

D114

D117

D120

D123

D126

Segment data correspondence table

	COM ₃	COM ₂	COM1		COM ₃	COM ₂
S1 (EP1)	D1 (EP1)	D2	D3	S 22	D64	D65
S2 (EP2)	D4 (EP2)	D5	D ₆	S 23	D67	D68
S3 (EP3)	D7 (EP3)	D8	D9	S 24	D70	D71
S4 (EP4)	D10 (EP4)	D11	D12	S25	D73	D74
S5	D13	D14	D15	S 26	D76	D77
S ₆	D16	D17	D18	S 27	D79	D80
S 7	D19	D20	D21	S28	D82	D83
S8	D22	D23	D24	S29	D85	D86
S9	D25	D26	D27	S 30	D88	D89
S 10	D28	D29	D30	S 31	D91	D92
S11	D31	D32	D33	S 32	D94	D95
S 12	D34	D35	D36	S 33	D97	D98
S 13	D37	D38	D39	S 34	D100	D101
S 14	D40	D41	D42	S35	D103	D104
S 15	D43	D44	D45	S 36	D106	D107
S 16	D46	D47	D48	S 37	D109	D110
S 17	D49	D50	D51	S38	D112	D113
S 18	D52	D53	D54	S 39	D115	D116
S 19	D55	D56	D57	S 40	D118	D119
S ₂₀	D58	D59	D60	KO1 (S41)	D121	D122
S ₂₁	D61	D62	D63	KO ₂ (S ₄₂)	D124	D125

1. If there is an unused segment output

If there is segment output that is not used, depending on the panel, the transmission of the LCD display data can be simplified by deciding the pin or pins to be used starting from S_{40} (S_{42} if pins 44 and 45 are used as segment output, and S_{41} if only pin 44 is used as segment output).

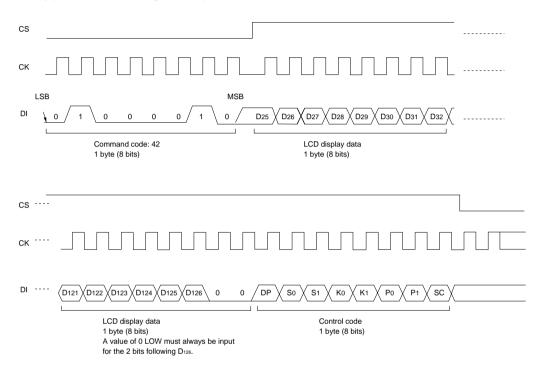


Fig. 7 Simplified data communication

This figure shows an example in which the 30 segment outputs from S_{11} to S_{40} are used, and assumes that communication is done in units of eight bits (one byte). For this reason, the data of S_9 and S_{10} (from D_{25} to D_{30}), which are not used, is input as dummy data. If the unit is not eight bits, this dummy data can be omitted, in which case the data should be input after the command code, starting from the data of D_{31} . However, even if Pins 44 and 45 are used as key scan output and not as segment output, the data for D_{121} to D_{126} cannot be omitted.

2. Control codes

The BU9768AK is designed to support various applications, depending on the combination of control codes used. • DP: Display mode control

Depending on the type of display, either 1 / 2 bias drive or 1 / 3 bias drive may be selected.

- 1: 1 / 2 bias drive
- 0: 1 / 3 bias drive
- So and S1: Sleep mode control

In the sleep modes, all displays are turned off, and the oscillation of the OSC pin is stopped, enabling a lower power consumption. In sleep modes, although all of the displays are turned off, key scans are enabled. For information on key scans in the sleep modes, please refer to pages 15 to 22.

Various sleep modes can be selected, depending on the application.

Control code		Mode	Segment / common	OSC	Key scan output					
S ₀	S1	wode	output	pin	KO1	KO ₂	KO₃	KO4	KO₅	KO ₆
0	0	Normal	Output	Oscillating	Н	н	н	н	Н	н
0	1	Sleep	Fixed at LOW	Stopped	L	L	L	L	L	н
1	0	Sleep	Fixed at LOW	Stopped	L	L	L	L	н	н
1	1	Sleep	Fixed at LOW	Stopped	Н	н	н	н	н	н

In the Sleep modes, oscillation of the OSC pin stops, but if a button is pressed while the key scan output is on the HIGH line, oscillation begins and a key scan is carried out. When the key scan has been completed, oscillation stops again.

• K₀, K₁: Control that switches between key scan and segment output

• Po, P1: Control that switches between segment and expansion pin output

The output can be switched to match a variety of applications, depending on the combination of the four bits.

(Contro	l code	9	-	scan / ment		Segm expans			Max. no. of display	Max. key input	
K₀	K1	P ₀	P1	44pin	45pin	1pin	2pin	3pin	4pin	segments		
0	0	0	0	KO1	KO ₂	S1	S ₂	S₃	S 4	120	30	
0	0	0	1	KO1	KO ₂	EP₁	EP ₂	S₃	S ₄	114	30	
0	0	1	0	KO1	KO ₂	EP1	EP ₂	EP₃	S 4	111	30	
0	0	1	1	KO1	KO ₂	EP1	EP ₂	EP₃	EP4	108	30	
0	1	0	0	S 41	KO ₂	S1	S ₂	S₃	S ₄	123	25	
0	1	0	1	S 41	KO ₂	EP1	EP ₂	S₃	S4	117	25	
0	1	1	0	S 41	KO ₂	EP1	EP ₂	EP₃	S4	114	25	
0	1	1	1	S 41	KO ₂	EP₁	EP ₂	EP₃	EP ₄	111	25	
1	*	0	0	S 41	S42	S1	S ₂	S3	S4	126	20	
1	*	0	1	S41	S42	EP1	EP ₂	S₃	S4	120	20	
1	*	1	0	S 41	S42	EP1	EP ₂	EP₃	S4	117	20	
1	*	1	1	S 41	S 42	EP1	EP ₂	EP₃	EP4	114	20	

* Don't Care

· SC: Control switching the LCD display on and off

Switching the LCD display on and off can be done regardless of the input data.

1: Display off

0: Display on (when displayed, displays can be obtained in accordance with the input data.)

Note: When the power supply is turned on, the following settings are in effect for control codes. These initial settings for control codes should be changed to match the mode being used.

When the power supply is turned on:

 $(DP, S_0, S_1, K_0, K_1, P_0, P_1, SC) = (0, 0, 0, 1, 1, 0, 0, 0)$

2) Transmission of key data

A command code of "43" should be input in order to output the results of a key scan to the BU9768AK / BU9768AKV.

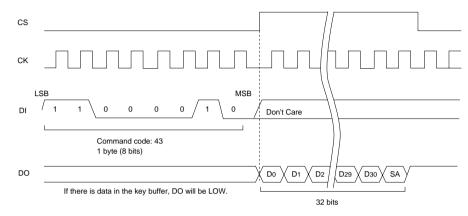


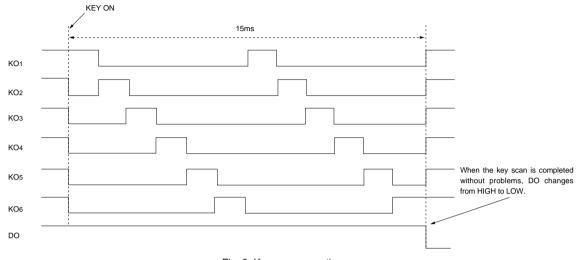
Fig. 8 Transmission of key data

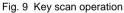
If CS is changed to HIGH level after the command code is input, the data in the key buffer is output synchronized to the rise of CK.

-	-				
	Kl₁	Kl2	Kl₃	KI4	Kl₅
KO1 (S41)	D1	D2	D₃	D4	D₅
KO2 (S42)	D ₆	D7	D8	D9	D10
KO₃	D11	D12	D13	D14	D15
KO4	D16	D17	D18	D19	D20
KO₅	D21	D22	D23	D24	D25
KO ₆	D26	D27	D28	D29	D30

Key data correspondence table

 \bullet The data D_0, which is output synchronized to the rise of CS, is unstable and should not be used.


• The output SA of the 32nd bit is a state acknowledge signal and outputs the current BU9768AK / BU9768AKV mode. SA: State acknowledge signal


In normal modes: SA = LOW

In sleep modes : SA = HIGH

(2) Key scan operation

With the BU9768AK / BU9768AKV, up to 30 key inputs can be received.

One key scan requires 15ms (if fosc = 38kHz, 582 / fosc (sec)). Key scans which are shorter than this time cannot be received. Also, in order to prevent chattering, the key scan waveform (KO output) reaches the HIGH level twice during one key scan. After scanning has been carried out twice, the data from the two scans is compared, and if the data for all of the keys does not match, an error occurs.

1) Key scans and key data communications

With the BU9768AK / BU9768AKV, if normal key input is received, DO changes from HIGH to LOW, so if DO is connected to the interrupt input pin of the controller, interrupt processing can be carried out based on the key input. Also, after DO changes to LOW following completion of a key scan, a new key scan cannot be carried out until all of the key data has been read.

If multiple keys are pressed at once, multiple key data is set for the various key inputs to be distinguished.

Fig. 10 Relationship between key scan and data communications

2) Key scans in sleep modes

In sleep modes, depending on the mode, the key scan standby state of the KO pin is restricted.

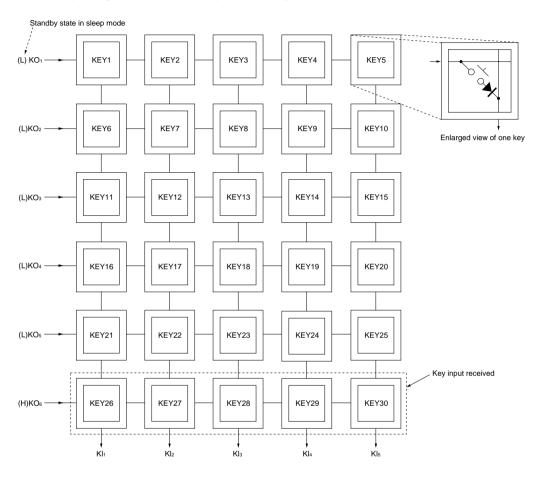


Fig. 11 Example of key matrix configuration

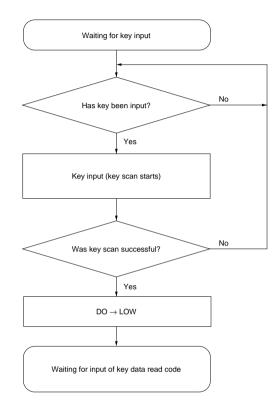
(The diodes installed on each key are to prevent erroneous recognition if multiple keys are pressed.)

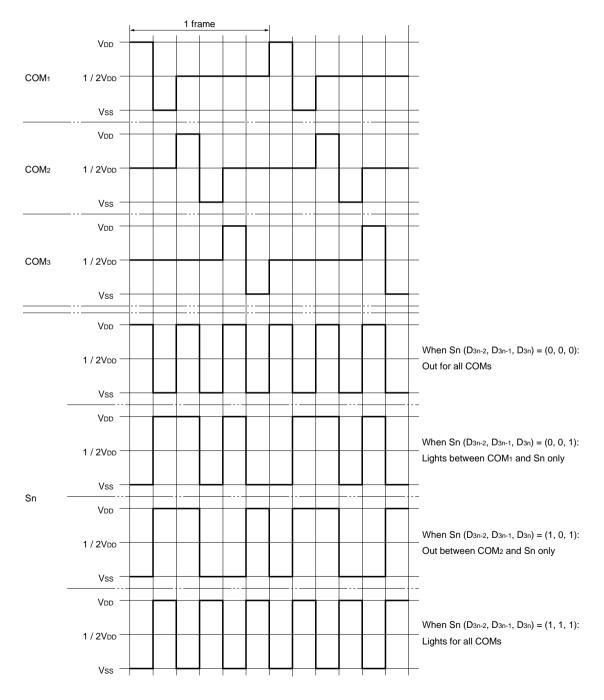
The figure above assumes that the control codes S_0 and S_1 have been set to 0 and 1, respectively. In this case, if any key between key 26 and key 30 is pressed, an HIGH level is input on the KIn line, oscillation begins, and a key scan is carried out. If any key between key 1 and key 25 is pressed, all of the KIn lines remain at LOW level, and no key scan is carried out. Oscillation resumes when the key scan has been completed.

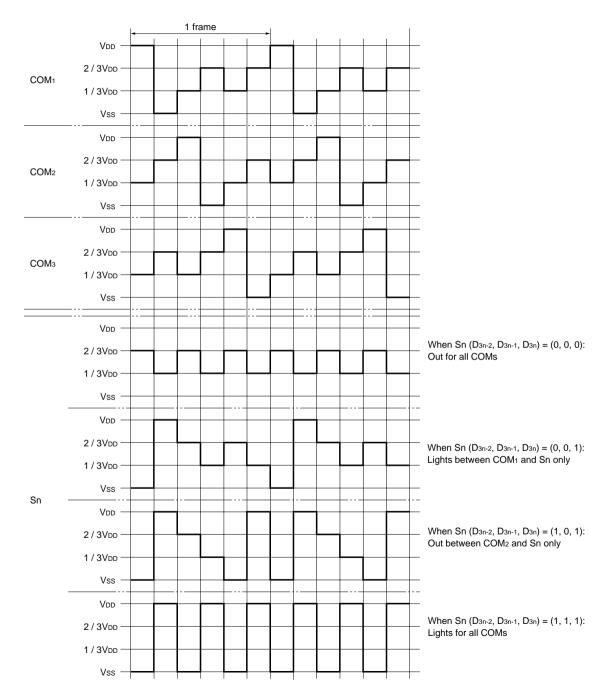
If key input in a sleep mode is to be used and interrupt processing carried out, a key on a KOn = HIGH line should be used.

3) Operation flow in a key scan

The flow of operations taking place during a key scan is shown below.



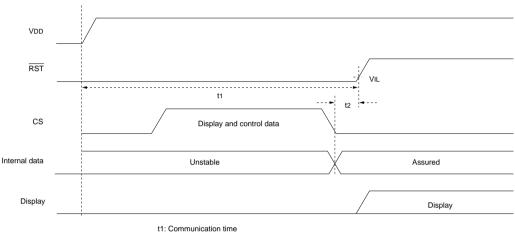

Fig. 12 Key scan flow

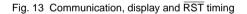

The "successful" judgment of the key scan shown in the illustration is based on the data from the two key scans matching for all of the keys, as described on page 13.

If an error occurs, the key scan is carried out once again after the first key scan has been completed if a key has remained pressed, and continues to be carried out as long as the key is pressed, until it is successfully completed. After a key scan has been successfully completed, no new key scans can be carried out until reading of the key data has been completed.

(3) Output waveforms

1) 1 / 2 bias mode (frame frequency = fosc / 384)




2) 1 / 3 bias mode (frame frequency = fosc / 384)

(4) $\overline{\text{RST}}$ and display control

After the power supply has been turned on, because the internal data of the BU9768AK / BU9768AKV (D₁ to D₁₂₆) is unstable, \overline{RST} goes LOW at the same time that the power supply is turned on. While \overline{RST} is LOW, data is transmitted using the microcomputer, and when data transmission has been completed, \overline{RST} can be set to HIGH to prevent meaningless displays. (For the states of control codes when the power supply is turned on, see page 11.)

t2: 10µs min.

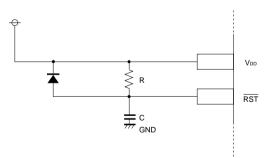


Fig. 14 Example of RST pin processing

In the circuit example shown above, the value of t1 is determined by the value of the capacitor and resistor. The value should be set in such a way that the constant determined by the capacitor and resistor is the initialized communication time + t2.

Operation notes

(1) Using the product with the synchronous clock stopped

If the synchronous clock is to be stopped during the period that data is not being transmitted, program the product so that the rise of CK is input at least twice after the fall of CS.

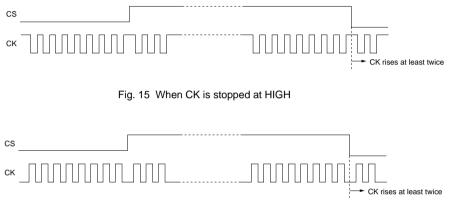
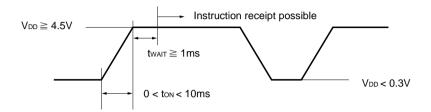
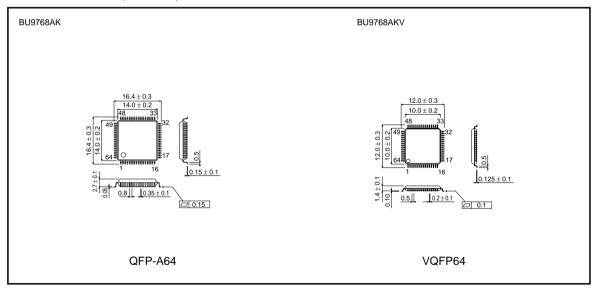


Fig. 16 When CK is stopped at LOW


(2) Precautions concerning key scans when the power supply is turned on

To carry out a key scan immediately after the power supply is turned on, without transmitting data, the parameters must be set so that the following conditions are met.


- 1) The rise of the synchronous clock pulse is input to the CK pin at least twice.
- 2) Since input can only be received from keys on the KO₃ to KO₆ line, other keys should not be used for functions such as interrupts. (For information on the status when the power supply is turned on, please see page 11.)
- * If data is being transferred before a key scan is carried out, after the power supply is turned on, these precautions do not apply.

Make sure of the following when resetting when the power is on.

- When using the external reset terminal, make RST = "L" at 1ms or more with VDD at 4.5V or more.
- When not using the external reset terminal, VDD has to satisfy the following conditions.

•External dimensions (Units: mm)

