Dual 4-Stage Binary Counter

The SN74LS393 contains a pair of high-speed 4-stage ripple counters.

Each half of the LS393 operates as a Modulo-16 binary divider, with the last three stages triggered in a ripple fashion. In the LS393, the flip-flops are triggered by a HIGH-to-LOW transition of their CP inputs. Each half of each circuit type has a Master Reset input which responds to a HIGH signal by forcing all four outputs to the LOW state.

- Dual Versions
- Individual Asynchronous Clear for Each Counter
- Typical Max Count Frequency of 50 MHz
- Input Clamp Diodes Minimize High Speed Termination Effects

GUARANTEED OPERATING RANGES

Symbol	Parameter	Min	Тур	Max	Unit
V _{CC}	Supply Voltage	4.75	5.0	5.25	V
T _A	Operating Ambient Temperature Range	0	25	70	°C
I _{ОН}	Output Current – High			-0.4	mA
I _{OL}	Output Current – Low			8.0	mA

ON Semiconductor

专业PCB打样工厂,24小时加急出货

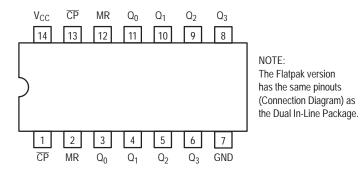
事多邦

Formerly a Division of Motorola http://onsemi.com

> LOW POWER SCHOTTKY

N SUFFIX CASE 646

SOIC D SUFFIX CASE 751A

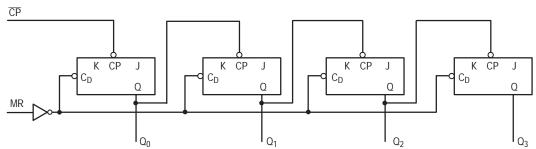


ORDERING INFORMATION

Device	Package	Shipping
SN74LS393N	14 Pin DIP	2000 Units/Box
SN74LS393D	14 Pin	2500/Tape & Reel

CONNECTION DIAGRAM DIP (TOP VIEW)

			G (Note a)
PIN NAME	S	HIGH	LOW
CP	Clock (Active LOW Going Edge)		
	Input to +16 (LS393)	0.5 U.L.	1.0 U.L.
CP ₀	Clock (Active LOW Going Edge)		
	Input to ÷2 (LS390)	0.5 U.L.	1.0 U.L.
CP ₁	Clock (Active LOW Going Edge)		
	Input to ÷ 5 (LS390)	0.5 U.L.	1.5 U.L.
MR	Master Reset (Active HIGH) Input	0.5 U.L.	0.25 U.L.
Q ₀ – Q ₃	Flip–Flop Outputs	10 U.L.	5 U.L.


NOTES:

a) 1 TTL Unit Load (U.L.) = 40 μ A HIGH/1.6 mA LOW.

FUNCTIONAL DESCRIPTION

Each half of the SN74LS393 operates in the Modulo 16 binary sequence, as indicated in the \div 16 Truth Table. The first flip-flop is triggered by HIGH-to-LOW transitions of the CP input signal. Each of the other flip-flops is triggered by a HIGH-to-LOW transition of the Q output of the preceding flip-flop. Thus state changes of the Q outputs do

not occur simultaneously. This means that logic signals derived from combinations of these outputs will be subject to decoding spikes and, therefore, should not be used as clocks for other counters, registers or flip-flops. A HIGH signal on MR forces all outputs to the LOW state and prevents counting.

SN74LS393 LOGIC DIAGRAM (one half shown)

TRUTH TABLE

COUNT		OUTF	PUTS		
COUNT	Q_3	Q_2	Q ₁	Q_0	
0 1 2 3					-
4 5 6 7		ΗΗΗ	L L H H	L H L	
8 9 10 11	H H H H	L L L	L L H H	L H L H	
12 13 14 15	H H H H	H H H H	L L H H	L H L H	

H = HIGH Voltage Level L = LOW Voltage Level

			Limits					
Symbol	Parameter		Min	Тур	Max	Unit	Test Conditions	
V _{IH}	Input HIGH Voltage		2.0			V	Guaranteed Inpu All Inputs	t HIGH Voltage for
V _{IL}	Input LOW Voltage				0.8	V	Guaranteed Inpu All Inputs	t LOW Voltage for
V _{IK}	Input Clamp Diode Volt	age		-0.65	-1.5	V	$V_{CC} = MIN, I_{IN} =$	–18 mA
V _{OH}	Output HIGH Voltage		2.7	3.5		V	$V_{CC} = MIN, I_{OH} = MAX, V_{IN} = V_{IH}$ or V_{IL} per Truth Table	
				0.25	0.4	V	l _{OL} = 4.0 mA	$V_{CC} = V_{CC} MIN,$
V _{OL}	Output LOW Voltage			0.35	0.5	V	l _{OL} = 8.0 mA	V _{IN} = V _{IL} or V _{IH} per Truth Table
1					20	μΑ	$V_{CC} = MAX, V_{IN}$	= 2.7 V
Iн	Input HIGH Current				0.1	mA	$V_{CC} = MAX, V_{IN}$	= 7.0 V
		MR			-0.4	mA	V _{CC} = MAX, V _{IN} = 0.4 V	
IIL	Input LOW Current	CP, CP ₀			-1.6	mA		
		CP ₁			-2.4	mA		
I _{OS}	Short Circuit Current (N	lote 1)	-20		-100	mA	V _{CC} = MAX	
I _{CC}	Power Supply Current				26	mA	V _{CC} = MAX	

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS (T_A = 25°C, V_{CC} = 5.0 V)

			Limits			
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
f _{MAX}	$\begin{array}{c} \text{Maximum Clock Frequency} \\ \overline{\text{CP}}_0 \text{ to } \text{Q}_0 \end{array}$	25	35		MHz	
f _{MAX}	$\begin{array}{c} \text{Maximum Clock Frequency} \\ \overline{\text{CP}}_1 \text{ to } \text{Q}_1 \end{array}$	20			MHz	
t _{PLH} t _{PHL}	Propagation Delay, \overline{CP} to Q_0		12 13	20 20	ns	C _L = 15 pF
t _{PLH} t _{PHL}	\overline{CP} to Q ₃		40 40	60 60	ns	
t _{PHL}	MR to Any Output		24	39	ns	

AC SETUP REQUIREMENTS (T_A = 25°C, V_{CC} = 5.0 V)

		Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
t _W	Clock Pulse Width	20			ns	
t _W	MR Pulse Width	20			ns	$V_{CC} = 5.0 V$
t _{rec}	Recovery Time	25			ns	

AC WAVEFORMS

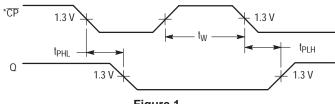
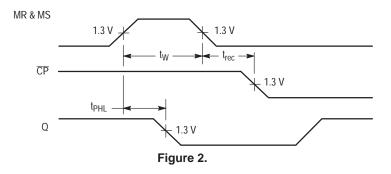
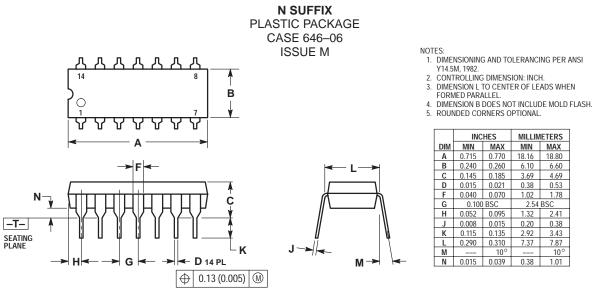
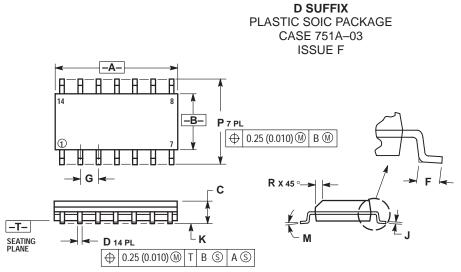




Figure 1.

*The number of Clock Pulses required between t_{PHL} and t_{PLH} measurements can be determined from the appropriate Truth Table.


PACKAGE DIMENSIONS

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.715	0.770	18.16	18.80	
В	0.240	0.260	6.10	6.60	
С	0.145	0.185	3.69	4.69	
D	0.015	0.021	0.38	0.53	
F	0.040	0.070	1.02	1.78	
G	0.100	BSC	2.54 BSC		
Н	0.052	0.095	1.32	2.41	
J	0.008	0.015	0.20	0.38	
К	0.115	0.135	2.92	3.43	
L	0.290	0.310	7.37	7.87	
Μ		10°		10°	
Ν	0.015	0.039	0.38	1.01	

PACKAGE DIMENSIONS

NOTES:

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES		
DIM	MIN	MIN MAX		MAX MIN		MAX
Α	8.55	8.75	0.337	0.344		
В	3.80	4.00	0.150	0.157		
С	1.35	1.75	0.054	0.068		
D	0.35	0.49	0.014	0.019		
F	0.40	1.25	0.016	0.049		
G	1.27	BSC	0.050 BSC			
J	0.19	0.25	0.008	0.009		
K	0.10	0.25	0.004	0.009		
Μ	0 °	7°	0 °	7°		
Р	5.80	6.20	0.228	0.244		
R	0.25	0.50	0.010	0.019		

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights not the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support German Phone: (+1) 303–308–7140 (M–F 2:30pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com French Phone: (+1) 303–308–7141 (M–F 2:30pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com English Phone: (+1) 303–308–7142 (M–F 1:30pm to 5:00pm UK Time)

English Phone: (+1) 303–308–7142 (M–F 1:30pm to 5:00pm UK Time) Email: ONlit@hibbertco.com ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong 800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549 Phone: 81–3–5487–8345 Email: r14153@onsemi.com

Fax Response Line: 303–675–2167 800–344–3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.