### 捷多邦,专业PCB打样工厂,24小时**SN474負LVC164245**

## 16-BIT 3.3-V TO 5-V LEVEL SHIFTING TRANSCEIVER WITH 3-STATE OLITPLITS

SCAS416F - MARCH 1994 - REVISED FEBRUARY 1999

- Member of the Texas Instruments
   Widebus™ Family
- EPIC™ (Enhanced-Performance Implanted CMOS) Submicron Process
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages

#### description

This 16-bit (dual-octal) noninverting bus transceiver contains two separate supply rails; B port has  $V_{CCB}$ , which is set at 5 V, and A port has  $V_{CCA}$ , which is set to operate at 3.3 V. This allows for translation from a 3.3-V to a 5-V environment and vice versa.

The SN74ALVC164245 is designed for asynchronous communication between data buses.

To ensure the high-impedance state during power up or power down, the output-enable  $(\overline{OE})$  input should be tied to  $V_{CC}$  through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

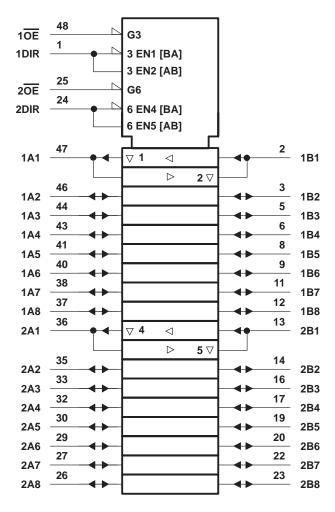
The SN74ALVC164245 is characterized for operation from -40°C to 85°C.

### DGG OR DL PACKAGE (TOP VIEW)

| 1                      |                |    |                          |
|------------------------|----------------|----|--------------------------|
| 1DIR                   | $ _{1}$ $\cup$ | 48 | 1 <u>OE</u>              |
| 1B1 [                  | 2              | 47 | ] 1A1                    |
| 1B2 [                  | 3              | 46 | 1A2                      |
| GND [                  | 4              | 45 | GND                      |
| 1B3 [                  |                | 44 | ] 1A3                    |
| 1B4 [                  | 6              | 43 | ] 1A4                    |
| (5 V) V <sub>CCB</sub> | 7              | 42 | V <sub>CCA</sub> (3.3 V) |
| 1B5 [                  | 8              | 41 | ] 1A5                    |
| 1B6 🛚                  | 9              | 40 | ] 1A6                    |
| GND [                  | 10             | 39 | ] GND                    |
| 1B7 [                  | 11             | 38 | ] 1A7                    |
| 1B8 🛚                  | 12             | 37 | 1A8                      |
| 2B1 [                  |                |    | 2A1                      |
| 2B2                    | 14             |    | 2A2                      |
| GND                    |                |    | GND                      |
| 2B3                    |                |    | 2A3                      |
| 2B4 L                  | 17             |    | 2A4                      |
| (5 V) V <sub>CCB</sub> | 18             | 31 | V <sub>CCA</sub> (3.3 V) |
| 2B5 🛚                  |                | 30 | 2A5                      |
| 2B6 🛚                  | 20             |    | 2A6                      |
| GND [                  |                | 28 | GND                      |
| 2B7 🛚                  | 22             | 27 | 2A7                      |
| 2B8 🛚                  | 23             | 26 | 2A8                      |
| 2DIR                   | 24             | 25 | 20E                      |
|                        |                | _  |                          |

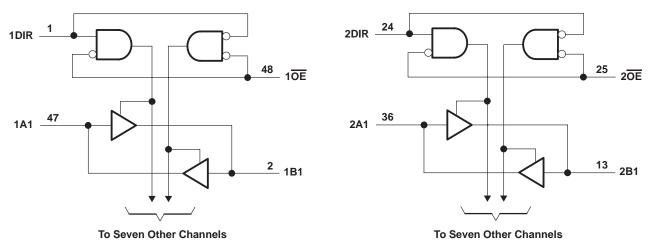
## FUNCTION TABLE (each 8-bit section)

| INP | UTS | ODEDATION       |  |  |  |
|-----|-----|-----------------|--|--|--|
| OE  | DIR | OPERATION       |  |  |  |
| L   | L   | B data to A bus |  |  |  |
| L   | Н   | A data to B bus |  |  |  |
| Н   | Χ   | Isolation       |  |  |  |


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.






SCAS416F - MARCH 1994 - REVISED FEBRUARY 1999

#### logic symbol†



<sup>&</sup>lt;sup>†</sup> This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

#### logic diagram (positive logic)





SCAS416F - MARCH 1994 - REVISED FEBRUARY 1999

# absolute maximum ratings over operating free-air temperature range for $V_{CCB}$ at 5 V and $V_{CCA}$ at 3.3 V (unless otherwise noted) $\!\!\!\!^{\dagger}$

| Supply voltage range: V <sub>CCA</sub>                               |                                             |
|----------------------------------------------------------------------|---------------------------------------------|
| Input voltage range, V <sub>I</sub> : Except I/O ports (see Note 1)  |                                             |
| I/O port A (see Note 2)                                              | $-0.5 \text{ V to V}_{CCA} + 0.5 \text{ V}$ |
| I/O port B (see Note 1)                                              | $-0.5 \text{ V to V}_{CCB} + 0.5 \text{ V}$ |
| Input clamp current, I <sub>IK</sub> (V <sub>I</sub> < 0)            |                                             |
| Output clamp current, $I_{OK}$ ( $V_O < 0$ )                         |                                             |
| Continuous output current, I <sub>O</sub>                            | ±50 mA                                      |
| Continuous current through each V <sub>CC</sub> or GND               | ±100 mA                                     |
| Package thermal impedance, θ <sub>JA</sub> (see Note 3): DGG package |                                             |
| DL package                                                           |                                             |
| Storage temperature range, T <sub>stg</sub>                          | –65°C to 150°C                              |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. This value is limited to 6 V maximum.
  - 2. This value is limited to 4.6 V maximum.
  - 3. The package thermal impedance is calculated in accordance with JESD 51.

#### recommended operating conditions for V<sub>CCB</sub> at 5 V (see Note 4)

|                 |                                    | MIN | MAX  | UNIT |
|-----------------|------------------------------------|-----|------|------|
| VCCB            | Supply voltage                     | 4.5 | 5.5  | V    |
| V <sub>IH</sub> | High-level input voltage           | 2   |      | V    |
| V <sub>IL</sub> | Low-level input voltage            |     | 0.8  | V    |
| VIA             | Input voltage                      | 0   | VCCB | V    |
| VOB             | Output voltage                     | 0   | VCCB | V    |
| Іон             | High-level output current          |     | -24  | mA   |
| loL             | Low-level output current           |     | 24   | mA   |
| Δt/Δν           | Input transition rise or fall rate |     | 10   | ns/V |
| TA              | Operating free-air temperature     | -40 | 85   | °C   |

NOTE 4: All unused inputs of the device must be held at the associated V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SCAS416F - MARCH 1994 - REVISED FEBRUARY 1999

### recommended operating conditions for V<sub>CCA</sub> at 3.3 V (see Note 4)

|                 |                                                                      | MIN | MAX  | UNIT |
|-----------------|----------------------------------------------------------------------|-----|------|------|
| VCCA            | Supply voltage                                                       | 2.7 | 3.6  | V    |
| VIH             | High-level input voltage $V_{CCA} = 2.7 \text{ V to } 3.6 \text{ V}$ | 2   |      | V    |
| V <sub>IL</sub> | Low-level input voltage $V_{CCA} = 2.7 \text{ V to } 3.6 \text{ V}$  |     | 0.8  | V    |
| V <sub>IB</sub> | Input voltage                                                        | 0   | VCCA | V    |
| VOA             | Output voltage                                                       | 0   | VCCA | V    |
| lou             | High-level output current                                            |     | -12  | mA   |
| ЮН              | V <sub>CCA</sub> = 3 V                                               |     | -24  | IIIA |
| lo              | Low-level output current                                             |     | 12   | mA   |
| lor             | V <sub>CCA</sub> = 3 V                                               |     | 24   | IIIA |
| Δt/Δν           | Input transition rise or fall rate                                   |     | 10   | ns/V |
| TA              | Operating free-air temperature                                       | -40 | 85   | °C   |

NOTE 4: All unused inputs of the device must be held at the associated V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

## electrical characteristics over recommended operating free-air temperature range for $V_{CCB} = 5 \text{ V}$ (unless otherwise noted) (see Note 5)

| PA                 | RAMETER        | TEST CONDITIONS                                      | V <sub>CCB</sub>                   | MIN | TYP† | MAX  | UNIT |
|--------------------|----------------|------------------------------------------------------|------------------------------------|-----|------|------|------|
|                    |                | Jan - 100 uA                                         | 4.5 V                              | 4.3 |      |      |      |
| \//^               | \ to D\        | I <sub>OH</sub> = -100 μA                            | 5.5 V                              | 5.3 |      |      | ٧    |
| VOH (A             | A 10 B)        | January 24 mA                                        | 4.5 V                              | 3.7 |      |      | V    |
|                    |                | $I_{OH} = -24 \text{ mA}$                            | 5.5 V                              | 4.7 |      |      |      |
|                    |                | I 400 wA                                             | 4.5 V                              |     |      | 0.2  |      |
| \/ /^              | to D)          | $I_{OL} = 100 \mu\text{A}$                           | 5.5 V                              |     |      | 0.2  | V    |
| VOL (A             | ( (O B)        | L                                                    | 4.5 V                              |     |      | 0.55 |      |
|                    |                | I <sub>OL</sub> = 24 mA                              | 5.5 V                              |     |      | 0.55 |      |
| II                 | Control inputs | $V_I = V_{CCB}$ or GND                               | 5.5 V                              |     |      | ±5   | μΑ   |
| loz‡               | A or B ports   | $V_O = V_{CCB}$ or GND                               | 5.5 V                              |     |      | ±10  | μΑ   |
| Icc                |                | $V_I = V_{CCB}$ or GND, $I_O = 0$                    | 5.5 V                              |     |      | 40   | μΑ   |
| Δl <sub>CC</sub> § |                | One input at 3.4 V, Other inputs at V <sub>C</sub> ( | <sub>B</sub> or GND 4.5 V to 5.5 V |     |      | 750  | μΑ   |
| Ci                 | Control inputs | V <sub>I</sub> = V <sub>CCB</sub> or GND             | 5 V                                |     | 6.5  |      | pF   |
| C <sub>io</sub>    | A or B ports   | $V_O = V_{CCB}$ or GND                               | 5 V                                |     | 6.5  |      | pF   |

<sup>&</sup>lt;sup>†</sup> Typical values are measured at  $V_{CC} = 3.3 \text{ V}$ ,  $T_A = 25^{\circ}\text{C}$ .



<sup>‡</sup> For I/O ports, the parameter IOZ includes the input leakage current.

<sup>§</sup> This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than at 0 or the associated V<sub>CC</sub>. NOTE 5: V<sub>CCA</sub> = 2.7 V to 3.6 V

SCAS416F - MARCH 1994 - REVISED FEBRUARY 1999

## electrical characteristics over recommended operating free-air temperature range for $V_{CCA} = 3.3 \text{ V}$ (unless otherwise noted) (see Note 6)

| PA                 | RAMETER        | TEST CONDITIONS                                                   | V <sub>CCA</sub>       | MIN                  | TYP† MAX | UNIT |  |
|--------------------|----------------|-------------------------------------------------------------------|------------------------|----------------------|----------|------|--|
|                    |                | $I_{OH} = -100 \mu\text{A}$                                       | 2.7 V to 3.6 V         | V <sub>CC</sub> -0.2 |          |      |  |
| \/\a\\\/\s\\\      | 2 to 1/2       | I <sub>OH</sub> = -12 mA                                          | 2.7 V                  | 2.2                  |          | V    |  |
| VOH (E             | 3 (0 A)        | 10H = -12 IIIA                                                    | 3 V                    | 2.4                  |          | V    |  |
|                    |                | $I_{OH} = -24 \text{ mA}$                                         | 3 V                    | 2                    |          |      |  |
|                    |                | $I_{OL} = 100 \mu\text{A}$                                        | 2.7 V to 3.6 V         |                      | 0.2      |      |  |
| V <sub>OL</sub> (E | 3 to A)        | $I_{OL} = 12 \text{ mA}$                                          | 2.7 V                  |                      | 0.4      | V    |  |
|                    | _              | $I_{OL} = 24 \text{ mA}$                                          | 3 V                    |                      | 0.55     |      |  |
| Ц                  | Control inputs | $V_I = V_{CCA}$ or GND                                            | 3.6 V                  |                      | ±5       | μΑ   |  |
| loz‡               |                | $V_O = V_{CCA}$ or GND                                            | 3.6 V                  |                      | ±10      | μΑ   |  |
| ICC                |                | $V_I = V_{CCA}$ or GND, $I_O = 0$                                 | 3.6 V                  |                      | 40       | μΑ   |  |
| ∆lcc§              |                | One input at $V_{CCA} - 0.6 \text{ V}$ , Other inputs at $V_{CC}$ | CA or GND 3 V to 3.6 V |                      | 750      | μΑ   |  |
| Ci                 | Control inputs | $V_I = V_{CCA}$ or GND                                            | 3.3 V                  |                      | 6.5      | pF   |  |
| C <sub>io</sub>    | A or B ports   | $V_O = V_{CCA}$ or GND                                            | 3.3 V                  |                      | 8.5      | pF   |  |

<sup>†</sup> Typical values are measured at  $V_{CC} = 3.3 \text{ V}$ ,  $T_A = 25^{\circ}\text{C}$ .

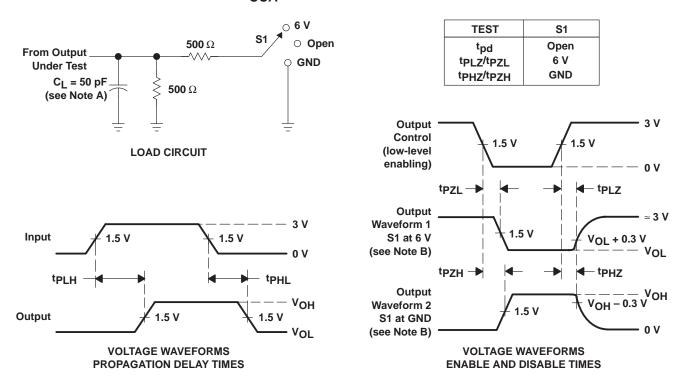
# switching characteristics over recommended operating free-air temperature range, $C_L$ = 50 pF (unless otherwise noted) (see Figures 1 and 2)

|                  |                 | TO<br>(OUTPUT) | V <sub>CCB</sub> = 5     |                                                  |      |      |
|------------------|-----------------|----------------|--------------------------|--------------------------------------------------|------|------|
| PARAMETER        | FROM<br>(INPUT) |                | V <sub>CCA</sub> = 2.7 V | $V_{CCA} = 3.3 \text{ V}$<br>$\pm 0.3 \text{ V}$ |      | UNIT |
|                  |                 |                | MIN MAX¶                 | PNIM                                             | MAX¶ |      |
| + .              | А               | В              | 5.9                      | 1                                                | 5.8  | nc   |
| <sup>t</sup> pd  | В               | А              | 6.7                      | 1.2                                              | 5.8  | ns   |
| t <sub>en</sub>  | ŌE              | В              | 9.3                      | 1                                                | 8.9  | ns   |
| <sup>t</sup> dis | ŌE              | В              | 9.2                      | 2.1                                              | 9.5  | ns   |
| t <sub>en</sub>  | ŌĒ              | A              | 10.2                     | 2                                                | 9.1  | ns   |
| <sup>t</sup> dis | ŌĒ              | A              | 9                        | 2.9                                              | 8.6  | ns   |

<sup>¶</sup> This limit can vary among suppliers.

#### operating characteristics, T<sub>A</sub> = 25°C

| PARAMETER       |                               | TEST CONDITIONS           | V <sub>CCA</sub> = 3.3 V<br>V <sub>CCB</sub> = 5 V | UNIT |    |
|-----------------|-------------------------------|---------------------------|----------------------------------------------------|------|----|
| C .             | Power dissipation capacitance | Outputs enabled (A or B)  | C <sub>I</sub> = 50 pF, f = 10 MHz                 | 56   | nΕ |
| C <sub>pd</sub> | Fower dissipation capacitance | Outputs disabled (A or B) | CL = 30 pr, 1 = 10 MHZ                             | 6    | pF |

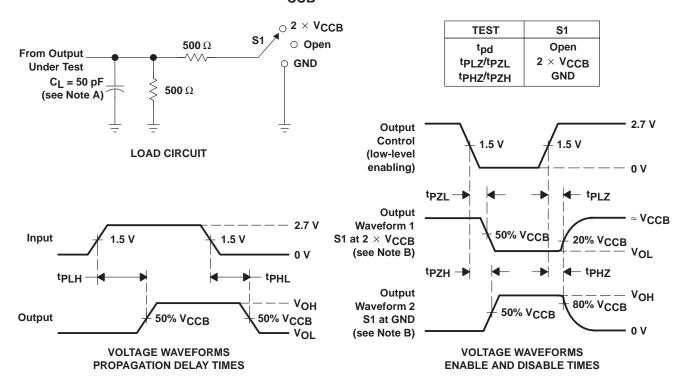



<sup>&</sup>lt;sup>‡</sup> For I/O ports, the parameter I<sub>OZ</sub> includes the input leakage current.

<sup>§</sup> This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than at 0 or the associated  $V_{CC}$ . NOTE 6:  $V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$ 

SCAS416F - MARCH 1994 - REVISED FEBRUARY 1999

## PARAMETER MEASUREMENT INFORMATION $V_{CCA} = 2.7 \text{ V AND } 3.3 \text{ V} \pm 0.3 \text{ V}$




- NOTES: A. C<sub>L</sub> includes probe and jig capacitance.
  - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
  - C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz,  $Z_O = 50 \ \Omega$ ,  $t_f \leq 2.5 \ ns$ .
  - D. The outputs are measured one at a time with one transition per measurement.
  - E. tpLz and tpHz are the same as tdis.
  - F. tpZL and tpZH are the same as ten.
  - G. tplH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

SCAS416F - MARCH 1994 - REVISED FEBRUARY 1999

## PARAMETER MEASUREMENT INFORMATION $V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$



NOTES: A. C<sub>I</sub> includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz,  $Z_O = 50 \Omega$ ,  $t_f \leq$  2.5 ns,  $t_f \leq$  2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E.  $t_{PLZ}$  and  $t_{PHZ}$  are the same as  $t_{dis}$ .
- F. tpzL and tpzH are the same as ten.
- G.  $t_{PLH}$  and  $t_{PHL}$  are the same as  $t_{pd}$ .

Figure 2. Load Circuit and Voltage Waveforms

#### **IMPORTANT NOTICE**

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated