查询SN74LVCH162244A供应商

专业PCB打样工厂 ゙, 24小**SM74出∀**CH162244A 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCAS545G - OCTOBER 1995 - REVISED JUNE 1999

DL OR DGG PACKAGE

(TOP VIEW)

- Member of the Texas Instruments Widebus[™] Family
- **EPIC[™]** (Enhanced-Performance Implanted **CMOS) Submicron Process**
- Output Ports Have Equivalent 26- Ω Series **Resistors, So No External Resistors Are** Required
- Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical VOHV (Output VOH Undershoot) > 2 V at V_{CC} = 3.3 V, T_A = 25°C
- Power Off Disables Outputs, Permitting Live Insertion
- Supports Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V V_{CC})
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per **JESD 17**
- **Bus Hold on Data Inputs Eliminates the** Need for External Pullup/Pulldown Resistors
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages

NOTE: For tape and reel order entry: The DGGR package is abbreviated to GR.

description

DZSC.COM This 16-bit buffer/driver is designed for 1.65-V to 3.6-V V_{CC} operation.

The SN74LVCH162244A is designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The device can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. It provides true outputs and symmetrical active-low output-enable (\overline{OE}) inputs.

The outputs, which are designed to sink up to 12 mA, include equivalent $26 \cdot \Omega$ resistors to reduce overshoot and undershoot.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

and Widebus are trademarks of Texas Instruments Incorporated

10E 1Y1 1Y2 GND 1Y3 1Y4 Vcc 2Y1 2Y2 GND 2Y3 2Y4 3Y1 3Y2 GND 3Y3 3Y4 Vcc 4Y1 4Y2 GND 4Y3	1 2 3 4 5 6 7 8 9	48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28	20E 1A1 1A2 GND 1A3 1A4 Vcc 2A1 2A2 GND 2A3 2A4 3A1 3A2 GND 3A3 3A4 Vcc 4A1 4A2 GND 4A3					
GND 3Y3 3Y4 V _{CC} 4Y1 4Y2 GND	15 16 17 18 19 20 21	 34 33 32 31 30 29 28] GND] 3A3] 3A4] V _{CC}] 4A1] 4A2] GND] 4A3					
库	WW	ţł.						

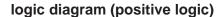
description (continued)

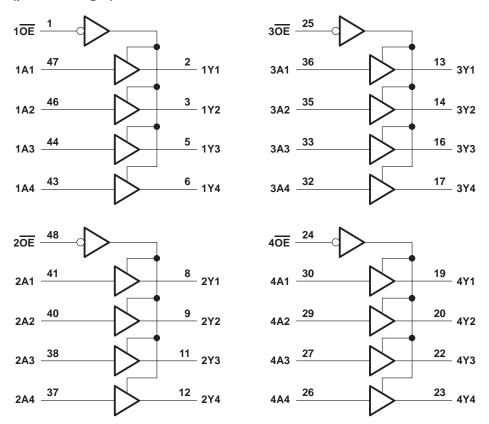
To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74LVCH162244A is characterized for operation from -40°C to 85°C.

FUNCTION TABLE (each 4-bit buffer)						
INPUTS OUTPUT						
OE	Α	Y				
L	Н	Н				
L	L	L				
Н	Х	Z				

logic symbol[†]


					1	
1 <mark>0E</mark>	1	EN1				
2 <mark>0E</mark>	48	EN2				
	25	EN3				
3OE	24					
40E		EN4				
4 4 4	47	—–	1		2	4.1/4
1A1	46		1	1 ∨	3	- 1Y1
1A2	44				5	- 1Y2
1A3 1A4	43				6	- 1Y3 - 1Y4
	41		-	2 ▽	8	
2A1	40		1	2 ∨	9	- 2Y1
2A2	38				11	- 2Y2
2A3	37				12	- 2Y3
2A4	36			• 7	13	- 2Y4
3A1	35		1	3 ▽	14	- 3Y1
3A2	33				16	- 3Y2
3A3	32				17	- 3Y3
3A4	30			4 \(\not\)	19	- 3Y4
4A1	29		1	4 🗸	20	- 4Y1
4A2	27	 			22	- 4Y2
4A3	26	 			23	- 4Y3
4A4						- 4Y4


[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SN74LVCH162244A 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS

SCAS545G - OCTOBER 1995 - REVISED JUNE 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1)	
Voltage range applied to any output in the high-impedance or power-off state, V_O	
(see Note 1)	–0.5 V to 6.5 V
Voltage range applied to any output in the high or low state, V _O	
(see Notes 1 and 2)	–0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I _{OK} (V _O < 0)	
Continuous output current, I _O	±50 mA
Continuous current through each V _{CC} or GND	
Package thermal impedance, θ_{JA} (see Note 3): DGG package	
DL package	
Storage temperature range, T _{stg}	

⁺ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The value of V_{CC} is provided in the recommended operating conditions table.

3. The package thermal impedance is calculated in accordance with JESD 51.

			MIN	MAX	UNIT	
Vee	Supply voltage	Operating	1.65	3.6	V	
VCC	Supply voltage	Data retention only	1.5		V	
		V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$			
VIH	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		$0.35 \times V_{CC}$		
VIL	Low-level input voltage	V_{CC} = 2.3 V to 2.7 V		0.7	V	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8		
VI	Input voltage		0	5.5	V	
V-	Output voltage	High or low state	0	VCC	v	
VO	Oulput voltage	3-state	0	5.5	v	
	CC Supply voltage Data IH High-level input voltage VCC VCC VCC VCC<	V _{CC} = 1.65 V		-2		
1		$V_{CC} = 2.3 V$		-4	mA	
ЮН		$V_{CC} = 2.7 V$		-8	IIIA	
		$V_{CC} = 3 V$		-12		
		V _{CC} = 1.65 V		2		
1	Low lovel output ourrent	$V_{CC} = 2.3 V$		4	mA	
IOL		$V_{CC} = 2.7 V$		8	IIIA	
		$V_{CC} = 3 V$		12		
$\Delta t / \Delta v$	Input transition rise or fall rate		0	10	ns/V	
TA	Operating free-air temperature		-40	85	°C	

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74LVCH162244A **16-BIT BUFFER/DRIVER** WITH 3-STATE OUTPUTS SCAS545G – OCTOBER 1995 – REVISED JUNE 1999

PARAMETER	TEST C	ONDITIONS	Vcc	MIN	TYP†	MAX	UNIT
	I _{OH} = -100 μA		1.65 V to 3.6 V	V _{CC} -0.	2		
V _{OH} V _{OL} I _I I _I (hold)	I _{OH} = -2 mA		1.65 V	1.2			
	$d) = \frac{ OH = -100 \ \mu A}{ OH = -2 \ m A} = \frac{ .65 \ V \ 1.65 \ V \ 1.65 \ V \ 1.2}{ OH = -4 \ m A} = \frac{ .65 \ V \ 1.65 \ V \ 1.2}{ OH = -4 \ m A} = \frac{ .23 \ V \ 1.7}{ .27 \ V \ 2.2} = \frac{ OH = -6 \ m A}{ .65 \ V \ 2.7 \ V \ 2.2} = \frac{ OH = -6 \ m A}{ .65 \ V \ 2.7 \ V \ 2.2} = \frac{ OH = -6 \ m A}{ .65 \ V \ 2.7 \ V \ 2.2} = \frac{ OH = -12 \ m A}{ .65 \ V \ 0.4 \ 2.7 \ V \ 2} = \frac{ OH = -12 \ m A}{ .65 \ V \ 0.4 \ V \ 2} = \frac{ OH = -12 \ m A}{ .65 \ V \ 0.4 \ V \ 2} = \frac{ OH = -12 \ m A}{ .65 \ V \ 0.4 \ V \ 2} = \frac{ OH = -12 \ m A}{ .65 \ V \ 0.4 \ V \ 2} = \frac{ OH = -12 \ m A}{ .65 \ V \ 0.4 \ V \ 2} = \frac{ OH = -12 \ m A}{ .65 \ V \ 0.4 \ V \ 2} = \frac{ OH = -12 \ m A}{ .65 \ V \ 0.4 \ V \ 0} = \frac{ OH = -12 \ m A}{ .65 \ V \ 0.4 \ V \ 0} = \frac{ OH = -12 \ m A}{ .65 \ V \ 0} = OH = -12 \ m $						
VOH	OH = -4 IIIA		2.7 V	2.2			V
	$I_{OH} = -6 \text{ mA}$		3 V	2.4			
	I _{OH} = -8 mA		2.7 V	2			
	I _{OH} = -12 mA		3 V	2		MAX 	
	I _{OL} = 100 μA		1.65 V to 3.6 V			0.2	
	I _{OL} = 2 mA		1.65 V			0.45	
	1 4		2.3 V			0.7	
VOL	OL = 4 mA		2.7 V			0.4	V
	I _{OL} = 6 mA		3 V			0.55	
	I _{OL} = 8 mA		2.7 V			0.6	
	I _{OL} = 12 mA		3 V			0.8	
Ц	V _I = 0 to 5.5 V		3.6 V			±5	μA
	V _I = 0.58 V		4.05.1/	+			
	V _I = 1.07 V		1.05 V	+			
	V _I = 0.7 V		0.01/	45			
l(hold)	V _I = 1.7 V		2.3 V	-45			μA
× ,	V _I = 0.8 V		0.1/	75			
	V ₁ = 2 V		3 V	-75			
	V _I = 0 to 3.6 V§		3.6 V			±500	
loff	V _I or V _O = 5.5 V		0			±10	μA
IOZ			3.6 V			±10	μA
	$V_I = V_{CC}$ or GND		0.01/			20	
Icc		10 = 0	3.6 V			20	μA
ΔICC		Other inputs at V _{CC} or GND	2.7 V to 3.6 V			500	μA
Ci			3.3 V		5.5		pF
Co			3.3 V		6		pF

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. [‡] This information was not available at the time of publication.

§ This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

¶ This applies in the disabled state only.

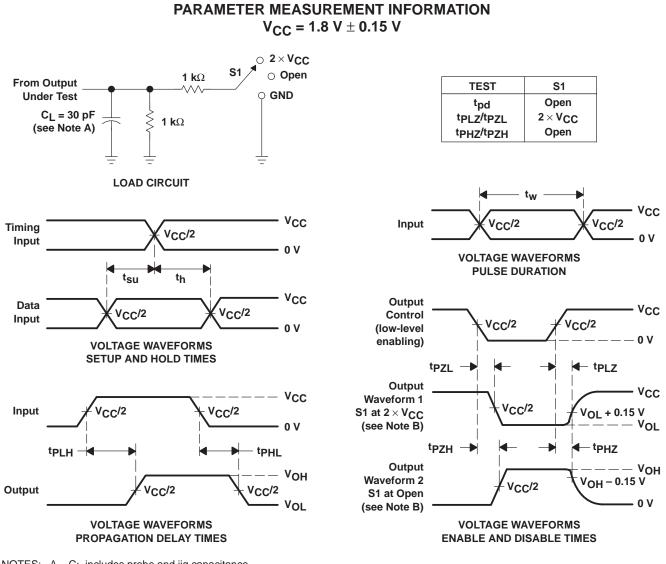
switching	characteristics	over	recommended	operating	free-air	temperature	range	(unless
otherwise	noted) (see Figu	res 1	through 3)					

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = ± 0.1		V _{CC} = ± 0.2		V _{CC} =	2.7 V	V _{CC} = ± 0.3	3.3 V 3 V	UNIT
		(001101)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
^t pd	A	Y	‡	‡	‡	‡		5.6	1.1	4.4	ns
ten	OE	Y	‡	‡	‡	‡		6.9	1	5.5	ns
t _{dis}	OE	Y	‡	‡	‡	‡		6.8	1.8	6.3	ns

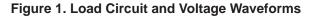
[‡]This information was not available at the time of publication.

SN74LVCH162244A 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCAS545G – OCTOBER 1995 – REVISED JUNE 1999

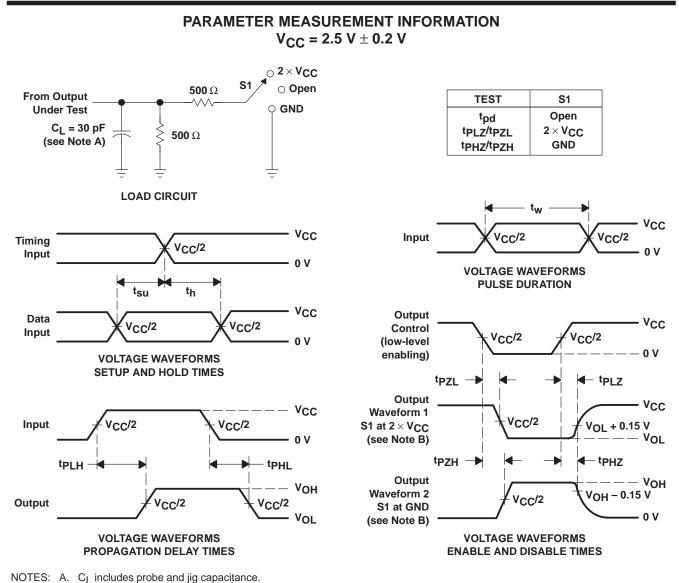
operating characteristics, $T_A = 25^{\circ}C$


PARAMETER			TEST CONDITIONS	V _{CC} = 1.8 V ± 0.15 V	$\begin{array}{c} \text{V}_{\text{CC}} = 2.5 \text{ V} \\ \pm 0.2 \text{ V} \end{array}$	V _{CC} = 3.3 V ± 0.3 V	UNIT	
				TYP	TYP	TYP		
Crut	Power dissipation capacitance	Outputs enabled	f = 10 MHz	†	†	35	ъЕ	
Cpd	C _{pd} per buffer/driver	Outputs disabled		†	†	4	рF	

[†] This information was not available at the time of publication.


SN74LVCH162244A 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS

SCAS545G - OCTOBER 1995 - REVISED JUNE 1999


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_O = 50 Ω, t_f ≤ 2 ns, t_f ≤ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .

SN74LVCH162244A **16-BIT BUFFER/DRIVER** WITH 3-STATE OUTPUTS SCAS545G - OCTOBER 1995 - REVISED JUNE 1999

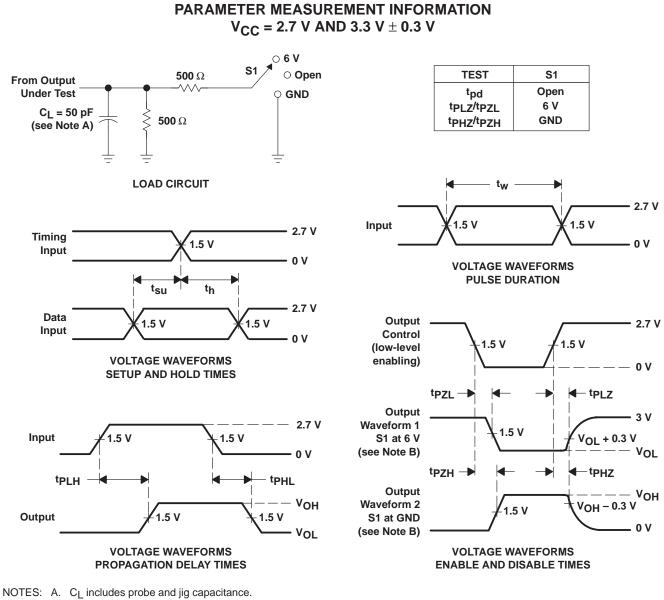

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2 ns, t_f \leq 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpl 7 and tpH7 are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tPLH and tPHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

SN74LVCH162244A 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS

SCAS545G - OCTOBER 1995 - REVISED JUNE 1999

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Q = 50 Ω, t_f ≤ 2.5 ns. t_f ≤ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. tpzL and tpzH are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 3. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated