

**SN54BCT534 SN74BCT534
OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS
WITH 3-STATE OUTPUTS**

SCBS033B – AUGUST 1989 – REVISED NOVEMBER 1993

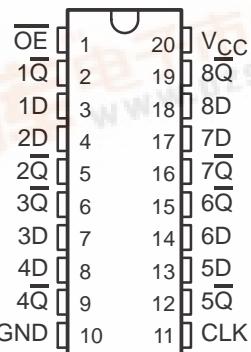
- State-of-the-Art BiCMOS Design Significantly Reduces I_{CCZ}
- Full Parallel Access for Loading
- Buffered Control Inputs
- 3-State Bus-Driving Inverted Outputs
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015
- Package Options Include Plastic Small-Outline (DW) Packages, Ceramic Chip Carriers (FK) and Flatpacks (W), and Plastic and Ceramic 300-mil DIPs (J, N)

description

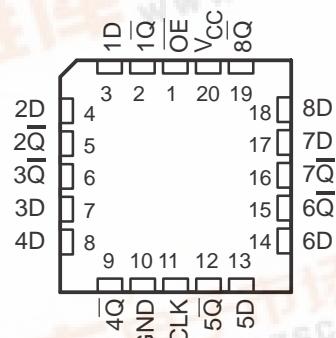
The 'BCT534 is an 8-bit flip-flop with 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. It is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight flip-flops of the 'BCT534 are edge-triggered D-type flip-flops. On the positive transition of the clock, the \bar{Q} outputs will be set to the complement of the logic levels that were set up at the data (D) inputs. The 'BCT534 provides inverted data at its outputs.

A buffered output-enable (\bar{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.

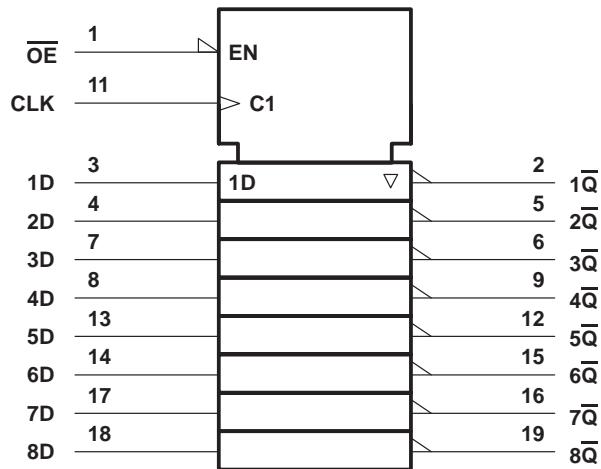

The output-enable (\bar{OE}) input does not affect the internal operations of the flip-flop. Previously stored data can be retained or new data can be entered while the outputs are in the high-impedance state.

The SN54BCT534 is characterized for operation over the full military temperature range of -55°C to 125°C . The SN74BCT534 is characterized for operation from 0°C to 70°C .

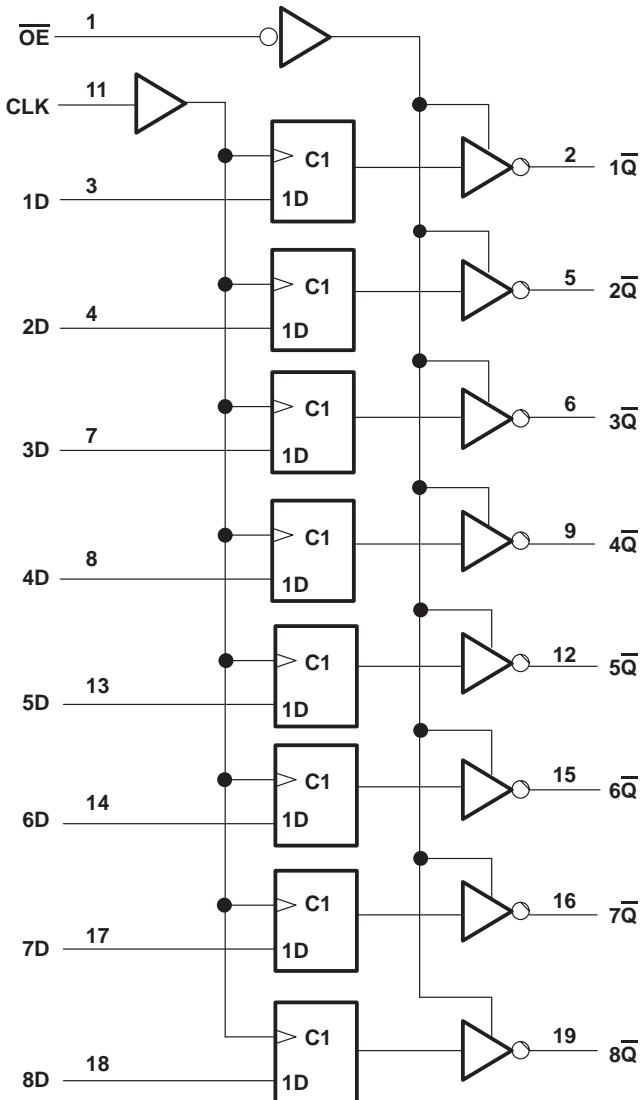

FUNCTION TABLE
(each flip-flop)

INPUTS			OUTPUT
\bar{OE}	CLK	D	\bar{Q}
L	\uparrow	H	L
L	\uparrow	L	H
L	H or L	X	\bar{Q}_0
H	X	X	Z

**SN54BCT534 . . . J OR W PACKAGE
SN74BCT534 . . . DW OR N PACKAGE**
(TOP VIEW)


SN54BCT534 . . . FK PACKAGE
(TOP VIEW)

SN54BCT534, SN74BCT534
OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS
WITH 3-STATE OUTPUTS


SCBS033B – AUGUST 1989 – REVISED NOVEMBER 1993

logic symbol†

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

SN54BCT534, SN74BCT534 OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS

SCBS033B – AUGUST 1989 – REVISED NOVEMBER 1993

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

recommended operating conditions

		SN54BCT534			SN74BCT534			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
V _{CC}	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
V _{IH}	High-level input voltage		2		2			V
V _{IL}	Low-level input voltage			0.8			0.8	V
I _{IK}	Input clamp current			-18			-18	mA
I _{OH}	High-level output current			-12			-15	mA
I _{OL}	Low-level output current			48			64	mA
T _A	Operating free-air temperature	-55		125	0		70	°C

SN54BCT534, SN74BCT534
OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS
WITH 3-STATE OUTPUTS

SCBS033B – AUGUST 1989 – REVISED NOVEMBER 1993

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	SN54BCT534			SN74BCT534			UNIT
		MIN	TYP†	MAX	MIN	TYP†	MAX	
V_{IK}	$V_{CC} = 4.5 \text{ V}$, $I_I = -18 \text{ mA}$			-1.2			-1.2	V
V_{OH}	$V_{CC} = 4.5 \text{ V}$	$I_{OH} = -3 \text{ mA}$	2.4	3.3	2.4	3.4		V
		$I_{OH} = -12 \text{ mA}$	2	3.2				
		$I_{OH} = -15 \text{ mA}$			2	3.1		
V_{OL}	$V_{CC} = 4.5 \text{ V}$	$I_{OL} = 48 \text{ mA}$	0.38	0.55				V
		$I_{OL} = 64 \text{ mA}$					0.42 0.55	
I_I	$V_{CC} = 5.5 \text{ V}$, $V_I = 5.5 \text{ V}$			0.4			0.4	mA
I_{IH}	$V_{CC} = 5.5 \text{ V}$, $V_I = 2.7 \text{ V}$			20			20	μA
I_{IL}	$V_{CC} = 5.5 \text{ V}$, $V_I = 0.5 \text{ V}$			-0.6			-0.6	mA
I_{OS}^{\ddagger}	$V_{CC} = 5.5 \text{ V}$, $V_O = 0$		-100	-225	-100		-225	mA
I_{OZH}	$V_{CC} = 5.5 \text{ V}$, $V_O = 2.7 \text{ V}$			50			50	μA
I_{OZL}	$V_{CC} = 5.5 \text{ V}$, $V_O = 0.5 \text{ V}$			-50			-50	μA
I_{CCL}	$V_{CC} = 5.5 \text{ V}$, $V_O = \text{Open}$		38	55	38	55		mA
I_{CCH}	$V_{CC} = 5.5 \text{ V}$, $V_O = \text{Open}$		5	8	5	8		mA
I_{CCZ}	$V_{CC} = 5.5 \text{ V}$, $V_O = \text{Open}$		4.5	7	4.5	7		mA
C_i	$V_{CC} = 5 \text{ V}$, $V_I = V_{CC} \text{ or GND}$		6		6			pF
C_o	$V_{CC} = 5 \text{ V}$, $V_O = V_{CC} \text{ or GND}$		10		10			pF

† All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$.

‡ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

		$V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$		SN54BCT534		SN74BCT534		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
f_{clock}	Clock frequency	0	77	0	70	0	77	MHz
t_w	Pulse duration	CLK high	6	6	6	6		ns
		CLK low	7	7	7	7		
t_{su}	Setup time before $CLK\uparrow$	Data high	6	6	6	6		ns
		Data low	9.5	9.5	9.5	9.5		
t_h	Hold time after $CLK\uparrow$	Data high	0	0	0	0		ns
		Data low	1	1	1	1		

SN54BCT534, SN74BCT534
OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS
WITH 3-STATE OUTPUTS

SCBS033B – AUGUST 1989 – REVISED NOVEMBER 1993

switching characteristics (see Note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 50 pF, R ₁ = 500 Ω, R ₂ = 500 Ω, T _A = 25°C			V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF, R ₁ = 500 Ω, R ₂ = 500 Ω, T _A = MIN to MAX†			UNIT	
			'BCT534			SN54BCT534		SN74BCT534		
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
f _{max}			77			70		77		MHz
t _{PLH}	CLK	Q̄	3.3	6.7	9.6	3.3	12.8	3.3	11.4	ns
t _{PHL}			3.5	6.2	8.8	3.5	11	3.5	10	
t _{PZH}	OĒ	Q̄	3.9	7.6	10.3	3.9	13.1	3.9	12.5	ns
t _{PZL}			4.6	8.2	11.1	4.6	13.7	4.6	13.3	
t _{PHZ}	OĒ	Q̄	2.6	4.7	6.7	2.6	8	2.6	7.4	ns
t _{PLZ}			1.8	4.1	6.1	1.8	7.8	1.8	6.9	

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.