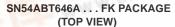
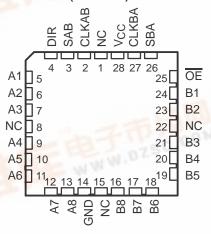
SCBS069G - JULY 1991 - REVISED MAY 1997

- State-of-the-Art EPIC-IIB™ BiCMOS Design
 Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical V_{OLP} (Output Ground Bounce)
 1 V at V_{CC} = 5 V, T_A = 25°C
- High-Drive Outputs (-32-mA I_{OH}, 64-mA I_{OL})
- Package Options Include Plastic Small-Outline (DW), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages, Ceramic Chip Carriers (FK), Ceramic Flat (W) Package, and Plastic (NT) and Ceramic (JT) DIPs


description


These devices consist of bus-transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers. Data on the A or B bus is clocked into the registers on the low-to-high transition of the appropriate clock (CLKAB or CLKBA) input. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 'ABT646A.

Output-enable (OE) and direction-control (DIR) inputs are provided to control the transceiver functions. In the transceiver mode, data present at the high-impedance port can be stored in either register or in both.

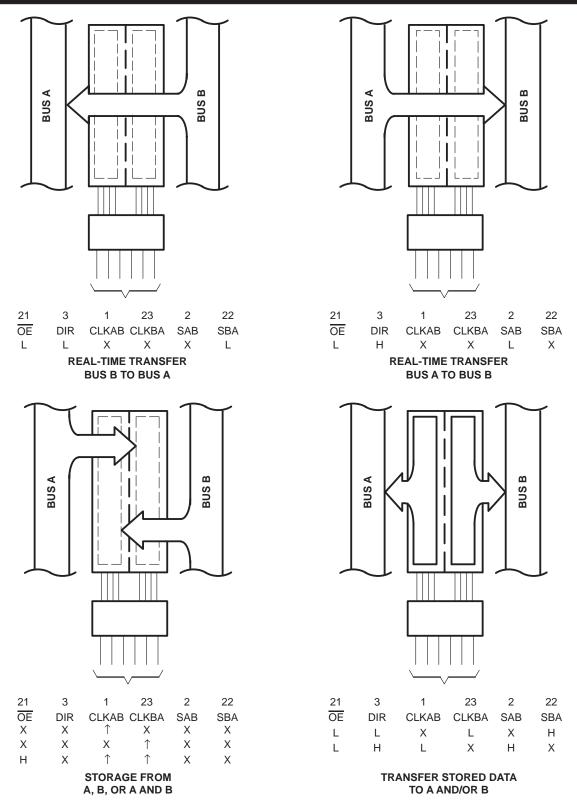
SN54ABT646A . . . JT OR W PACKAGE SN74ABT646A . . . DB, DW, NT, OR PW PACKAGE (TOP VIEW)

NC - No internal connection

The select-control (SAB and SBA) inputs can multiplex stored and real-time (transparent mode) data. The direction control (DIR) determines which bus receives data when \overline{OE} is low. In the isolation mode (\overline{OE} high), A data can be stored in one register and/or B data can be stored in the other register.

When an output function is disabled, the input function is still enabled and can be used to store and transmit data. Only one of the two buses, A or B, can be driven at a time.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

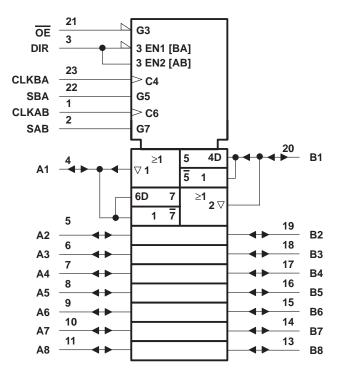

The SN54ABT646A is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ABT646A is characterized for operation from –40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCBS069G - JULY 1991 - REVISED MAY 1997

Pin numbers shown are for the DB, DW, JT, NT, PW, and W packages.

Figure 1. Bus-Management Functions

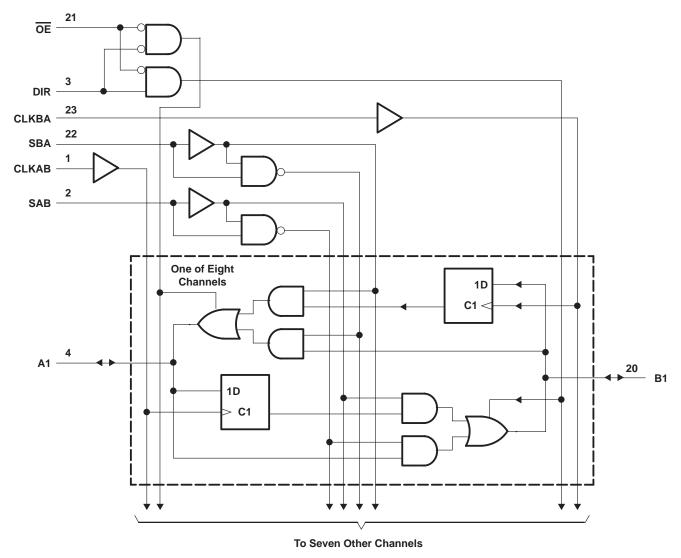

SCBS069G - JULY 1991 - REVISED MAY 1997

FUNCTION TABLE

		INP	UTS			DATA	A I/Os	OPERATION OR FUNCTION
ŌĒ	DIR	CLKAB	CLKBA	SAB	SBA	A1-A8	B1-B8	OPERATION OR FUNCTION
Х	Х	1	Х	Х	Χ	Input	Unspecified [†]	Store A, B unspecified [†]
Х	Χ	Χ	\uparrow	Χ	Χ	Unspecified [†]	Input	Store B, A unspecified [†]
Н	Х	1	\uparrow	Х	Х	Input	Input	Store A and B data
Н	Χ	H or L	H or L	Χ	Χ	Input disabled	Input disabled	Isolation, hold storage
L	L	Х	Х	Х	L	Output	Input	Real-time B data to A bus
L	L	Χ	H or L	Χ	Н	Output	Input	Stored B data to A bus
L	Н	Х	Х	L	Χ	Input	Output	Real-time A data to B bus
L	Н	H or L	Χ	Н	Χ	Input	Output	Stored A data to B bus

[†] The data-output functions may be enabled or disabled by various signals at OE and DIR. Data-input functions are always enabled; i.e., data at the bus terminals is stored on every low-to-high transition of the clock inputs.

logic symbol‡



[‡] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the DB, DW, JT, NT, PW, and W packages.

SCBS069G - JULY 1991 - REVISED MAY 1997

logic diagram (positive logic)

Pin numbers shown are for the DB, DW, JT, NT, PW, and W packages.

SCBS069G - JULY 1991 - REVISED MAY 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}		
Input voltage range, V _I (except I/O ports) (see	Note 1)	
Voltage range applied to any output in the high		
Current into any output in the low state, Io: SN		
SN	N74ABT646A	128 m/
Input clamp current, I _{IK} (V _I < 0)		
Output clamp current, I_{OK} ($V_O < 0$)		
Package thermal impedance, θ _{IA} (see Note 2)		
, G/(\		81°C/V
		67°C/V
		120°C/V
Storage temperature range, T _{stg}		

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 3)

		SN54AB	T646A	SN74AB	T646A	UNIT
		MIN	MAX	MIN	MAX	UNIT
Vcc	Supply voltage	4.5	5.5	4.5	5.5	V
VIH	High-level input voltage	2		2		V
V _{IL}	Low-level input voltage		0.8		0.8	V
٧ _I	Input voltage	0	VCC	0	VCC	V
IOH	High-level output current		-24		-32	mA
loL	Low-level output current		48		64	mA
Δt/Δν	Input transition rise or fall rate		5		5	ns/V
TA	Operating free-air temperature	– 55	125	-40	85	°C

NOTE 3: Unused pins (input or I/O) must be held high or low to prevent them from floating.

^{2.} The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51, except for through-hole packages, which use a trace length of zero.

SCBS069G - JULY 1991 - REVISED MAY 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CO	T _A = 25°C			SN54AB	T646A	SN74AB	UNIT			
PARAMETER	TEST COI	NDITIONS	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT	
VIK	$V_{CC} = 4.5 \text{ V},$	$I_{I} = -18 \text{ mA}$			-1.2		-1.2		-1.2	V	
	$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -3 \text{ mA}$	2.5			2.5		2.5			
Vou	$V_{CC} = 5 V$,	$I_{OH} = -3 \text{ mA}$	3			3		3		V	
VOH	V _{CC} = 4.5 V	$I_{OH} = -24 \text{ mA}$	2			2				V	
	VCC = 4.5 V	$I_{OH} = -32 \text{ mA}$	2*					2			
V _{OL}	V _{CC} = 4.5 V	I _{OL} = 48 mA			0.55		0.55			V	
VOL	VCC = 4.5 V	I _{OL} = 64 mA			0.55*				0.55	V	
V _{hys}				100						mV	
Control inputs	$V_{CC} = 5.5 \text{ V}, V_I = V_{CC} \text{ or GND}$				±1		±1		±1	μΑ	
A or B ports					±100		±100		±100	μΛ	
l _{OZH} ‡	$V_{CC} = 5.5 \text{ V},$	$V_0 = 2.7 \text{ V}$			10§		10§		10§	μΑ	
lozL [‡]	$V_{CC} = 5.5 \text{ V},$	$V_0 = 0.5 V$			–10§		–10§		–10§	μΑ	
l _{off}	$V_{CC} = 0$,	V_I or $V_O \le 4.5 \text{ V}$			±100				±100	μΑ	
ICEX	V _{CC} = 5.5 V, V _O = 5.5 V	Outputs high			50		50		50	μΑ	
IO¶	V _{CC} = 5.5 V,	V _O = 2.5 V	-50	-100	-180	-50	-180	-50	-180	mA	
	V _{CC} = 5.5 V,	Outputs high			250		250		250	μΑ	
Icc	$I_{O} = 0$,	Outputs low			30		30		30	mA	
	$V_I = V_{CC}$ or GND	Outputs disabled			250		250		250	μΑ	
ΔI _{CC} #	V _{CC} = 5.5 V, One input at 3.4 V, Other inputs at V _{CC} or GND				1.5		1.5		1.5	mA	
C _i Control inputs	V _I = 2.5 V or 0.5 V			7						pF	
C _{io} A or B ports	V _O = 2.5 V or 0.5	V		12						pF	

^{*} On products compliant to MIL-PRF-38535, this parameter does not apply.

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 2)

			SN54AI	3T646A		
		V _{CC} = 5 V, T _A = 25°C			MIN MAX	
		MIN	MAX			
fclock	Clock frequency	0	125	0	125	MHz
t _W	Pulse duration, CLK high or low	4		4		ns
t _{su}	Setup time, A or B before CLKAB↑ or CLKBA↑	3		3.5		ns
th	Hold time, A or B after CLKAB↑ or CLKBA↑	1.5		1.5		ns

[†] All typical values are at $V_{CC} = 5 \text{ V}$.

[‡] The parameters I_{OZH} and I_{OZL} include the input leakage current.

[§] This data sheet limit may vary among suppliers.

[¶] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

 $^{^{\#}}$ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SCBS069G - JULY 1991 - REVISED MAY 1997

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 2)

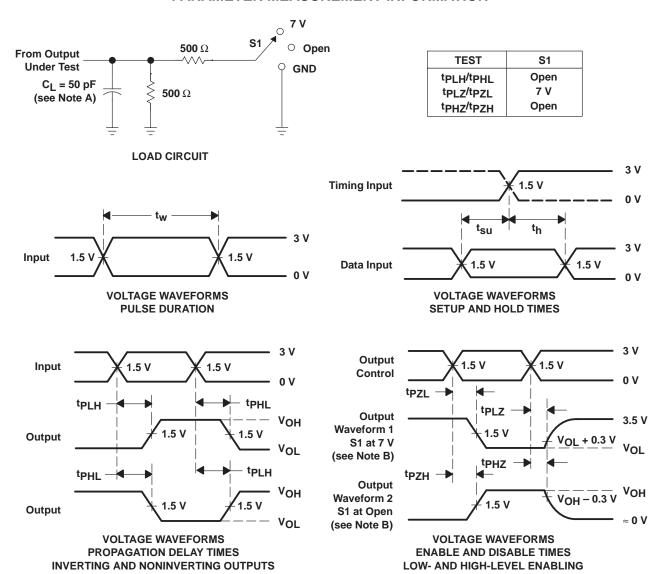
		V _{CC} =	= 5 V, 25°C	MIN	MAX	UNIT
			MAX	1		
fclock	Clock frequency	0	125	0	125	MHz
t _W	Pulse duration, CLK high or low	4		4		ns
t _{su}	Setup time, A or B before CLKAB↑ or CLKBA↑	3		3		ns
th	Hold time, A or B after CLKAB↑ or CLKBA↑	0		0		ns

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, T _A = 25°C			MIN	MAX	UNIT
			MIN	TYP	MAX			
f _{max}			125			125		MHz
^t PLH	CLKBA or CLKAB	A or B	2.2	4	5.1	2.2	6.7	ns
^t PHL	CLKBA OF CLKAB	AUID	1.7	4	5.1	1.2	6.7	115
^t PLH	A or B	B or A	1.5	3	4.3	1.5	5	
^t PHL		D OF A	1.5	3.3	4.6	1.5	5.6	ns
^t PLH	SAB or SBA†	D or A	1.5	4	5.7	1.5	7.8	
^t PHL		B or A	1.5	3.6	4.9	1.5	6.2	ns
^t PZH		A or B	1.5	4.3	5.3	1.5	7	ns
t _{PZL}	ŌĒ		3	5.8	8	3	10.5	
^t PHZ		A or D	1.5	3.5	5.8	1	7.3	
^t PLZ	ŌĒ	A or B	1.5	3	4	1.5	5.7	ns
^t PZH	DID	A or B	1.5	4.5	5.7	1.5	7.3	
t _{PZL}	DIR	A OF B	2.5	6.5	9	2.5	11	ns
^t PHZ	DIR	A or B	1.5	3.8	6.5	1	9	
^t PLZ	אוט	A OF B	1.5	3.8	4.7	1.2	6.7	ns

[†] These parameters are measured with the internal output state of the storage register opposite that of the bus input.

SCBS069G - JULY 1991 - REVISED MAY 1997


switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, T _A = 25°C			MIN	MAX	UNIT
			MIN	TYP	MAX			
f _{max}			125			125		MHz
^t PLH	CLKBA or CLKAB	A or B	2.2	4	5.1	2.2	5.6	ns
^t PHL		AOID	1.7	4	5.1	1.7	5.6	115
t _{PLH}	A or B	B or A	1.5	3	4.3	1.5	4.8	ns
t _{PHL}		D OI A	1.5	3.3	4.6	1.5	5.4	115
t _{PLH}	SAB or SBA†	B or A	1.5	4	5.1	1.5	6.5	ns
t _{PHL}		BUIA	1.5	3.6	4.9	1.5	5.9	115
^t PZH	ŌĒ	A or B	1.5	4.3	5.3	1.5	6.3	ns
tPZL	OE	AUID	3	5.8	7.4	3	8.8	115
^t PHZ	ŌĒ	A or P	1.5	3.5	4.5	1.5	5	20
t _{PLZ}	ÜE	A or B	1.5	3	4	1.5	4.5	ns
^t PZH	DIR	A or D	1.5	4.5	5.7	1.5	6.7	
t _{PZL}	אוע	A or B	2.5	6.5	9	2.5	9.5	ns
^t PHZ	DIR	A or P	1.5	3.8	5	1.5	5.7	no
^t PLZ	אוע	A or B	1.5	3.8	4.7	1.5	6	ns

[†] These parameters are measured with the internal output state of the storage register opposite that of the bus input.

SCBS069G - JULY 1991 - REVISED MAY 1997

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated