捷多邦,专业PSN54ABT16245PSN74ABT16245 16-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SCBS084B - D3712, JANUARY 1991 - REVISED DECEMBER 1992

- Members of the Texas Instruments
 Widebus™ Family
- State-of-the-Art EPIC-IIB ™ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical V_{OLP} (Output Ground Bounce)
 1 V at V_{CC} = 5 V, T_A = 25°C
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes
 PCB Layout
- High-Drive Outputs (-32-mA I_{OH}, 64-mA I_{OL})
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT16245 is a 16-bit (dual-octal) noninverting 3-state transceiver designed for synchronous two-way communication between data buses. The control function implementation minimizes external timing requirements.

This device can be used as two 8-bit transceivers or one 16-bit transceiver. It allows data

transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic level at the direction-control (DIR) input. The output-enable (OE) input can be used to disable the device so that the buses are effectively isolated.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

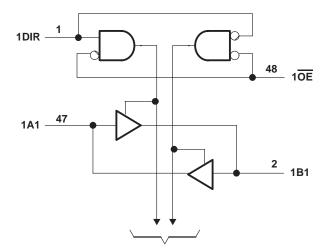
The SN74ABT16245 is available in TI's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54ABT16245 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ABT16245 is characterized for operation from –40°C to 85°C.

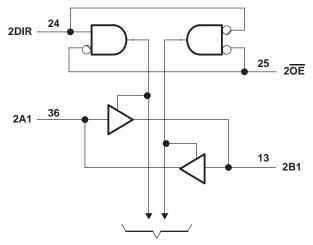
FUNCTION TABLE (each 8-bit section)

INP	UTS	OPERATION					
OE	DIR	OPERATION B data to A bus					
L	L	B data to A bus					
L	Н	A data to B bus					
Н	X	Isolation					

SN54ABT16245 . . . WD PACKAGE SN74ABT16245 . . . DGG OR DL PACKAGE (TOP VIEW)


- 1			
1DIR	1	48	10E
1B1 [2	47] 1A1
1B2	3	46	1A2
GND [4	45	GND
1B3 🛚	5	44	1A3
1B4 [6	43] 1A4
v _{cc} [7	42] v _{cc}
1B5 [1A5
1B6 🛚	9	40	1A6
GND [10	39	GND
1B7 [11	38] 1A7
1B8 [12	37	1A8
2B1	13	36	2A1
2B2	14	35	2A2
GND [15		GND
2B3 [16	33	2A3
2B4 [17		2A4
v _{cc} [18	31] v _{cc}
2B5 [19	30	2A5
2B6 [20	29	2A6
GND [21	28	GND
2B7 [22	27	2A7
2B8 [23	26	2A8
2DIR	24	25	20E
	-44.9		

TEXAS


logic symbol†

10E G3 1 1DIR 3 EN1 [BA] 3 EN2 [AB] 25 20E G6 24 2DIR 6 EN4 [BA] 6 EN5 [AB] 1A1 **▽ 1** \triangleleft 1B1 \triangleright 2∇ 3 46 1B2 1A2 5 44 1B3 1A3 43 6 1A4 1B4 41 8 1B5 1A5 40 9 1B6 1A6 11 38 1A7 **1B7** 37 12 1A8 1B8 36 13 2B1 2A1 **∀** 4 \triangleleft 5 ▽ \triangleright 35 14 2A2 2B2 16 33 2A3 2B3 17 32 2B4 2A4 30 19 2A5 2B5 29 20 2A6 2B6 27 22 2A7 2B7 26 23 2A8 2B8

logic diagram (positive logic)

To Seven Other Channels

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply voltage range, V _{CC}	\ldots -0.5 V to 7 V
Input voltage range, V _I (except I/O ports) (see Note 1)	\ldots -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, VO	-0.5 V to 5.5 V
Current into any output in the low state, IO: SN54ABT16245	96 mA
SN74ABT16245	128 mA
Input clamp current, I_{IK} ($V_I < 0$)	–18 mA
Output clamp current, I _{OK} (V _O < 0)	50 mA
Maximum power dissipation at T _A = 55°C (in still air): DGG package	0.8 W
DL package	0.85 W
Storage temperature range	65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

recommended operating conditions (see Note 2)

			SN54AE	3T16245	SN74AE	BT16245	
			MIN	MAX	MIN	MAX	UNIT
Vcc	Supply voltage		4.5	5.5	4.5	5.5	V
VIH	High-level input voltage		2		2		V
V _{IL}	Low-level input voltage			0.8		0.8	V
٧ _I	Input voltage		0	Vсс	0	Vсс	V
lOH	High-level output current			-24		-32	mA
loL	Low-level output current			48		64	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
TA	Operating free-air temperature	•	-55	125	-40	85	°C

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			T _A = 25°C			SN54ABT16245		SN74ABT16245		UNIT
PARAMETER				MIN	TYP†	MAX	MIN	MAX	MIN	MAX	ONIT
VIK	$V_{CC} = 4.5 \text{ V},$	I _I = -18 mA				-1.2		-1.2		-1.2	V
	$V_{CC} = 4.5 \text{ V},$ $I_{OH} = -3 \text{ mA}$ $V_{CC} = 5 \text{ V},$ $I_{OH} = -3 \text{ mA}$		4	2.5			2.5		2.5		
Vari			4	3			3		3		V
VOH	$V_{CC} = 4.5 \text{ V}, \qquad I_{OH} = -24 \text{ mA}$			2			2				V
	$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -32 \text{ m}$	nA	2‡					2		
Voi	$V_{CC} = 4.5 \text{ V},$	I _{OL} = 48 mA				0.55		0.55			V
VOL	$V_{CC} = 4.5 \text{ V},$	I _{OL} = 64 mA				0.55‡				0.55	V
II	V _{CC} = 5.5 V,		Control inputs			±1		±1		±1	
'1	$V_I = V_{CC}$ or GND		A or B ports			±100		±100		±100	μΑ
I _{OZH} §	$V_{CC} = 5.5 \text{ V},$	$V_0 = 2.7 \text{ V}$				10¶		10		10¶	μΑ
I _{OZL} §	$V_{CC} = 5.5 \text{ V},$	$V_0 = 0.5 V$				-10¶		-10		-10¶	μΑ
l _{off}	$V_{CC} = 0$,	V_I or $V_O \le 4$.	5 V			±100				±100	μΑ
ICEX	$V_{CC} = 5.5 \text{ V},$	$V_0 = 5.5 V$	Outputs high			50		50		50	μΑ
IO#	$V_{CC} = 5.5 \text{ V},$	$= 4.5 \text{ V}, \qquad I_{\text{I}} = -18 \text{ mA}$ $= 4.5 \text{ V}, \qquad I_{\text{OH}} = -3 \text{ mA}$ $= 5 \text{ V}, \qquad I_{\text{OH}} = -3 \text{ mA}$ $= 4.5 \text{ V}, \qquad I_{\text{OH}} = -24 \text{ m}$ $= 4.5 \text{ V}, \qquad I_{\text{OH}} = -32 \text{ m}$ $= 4.5 \text{ V}, \qquad I_{\text{OL}} = 48 \text{ mA}$ $= 4.5 \text{ V}, \qquad I_{\text{OL}} = 64 \text{ mA}$ $= 5.5 \text{ V}, \qquad I_{\text{OL}} = 64 \text{ mA}$ $= 5.5 \text{ V}, \qquad V_{\text{O}} = 0.5 \text{ V}$ $= 5.5 \text{ V}, \qquad V_{\text{O}} = 0.5 \text{ V}$ $= 5.5 \text{ V}, \qquad V_{\text{O}} = 5.5 \text{ V}$ $= 5.5 \text{ V}, \qquad V_{\text{O}} = 5.5 \text{ V}$ $= 5.5 \text{ V}, \qquad V_{\text{O}} = 2.5 \text{ V}$ $= 5.5 \text{ V}, \qquad V_{\text{O}} $		-50	-100	-180	-50	-180	-50	-180	mA
	.,		Outputs high			2		2		2	mA
lcc	$V_{CC} = 5.5 \text{ V},$ $I_{O} = 0,$ A or	A or B ports	Outputs low			32		32		32	
·cc	$V_I = V_{CC}$ or GND	A or B ports	Outputs disabled			2		2		2	110.0
	Other inputs at	One input at 3.4 V, Data inputs Other inputs at	Outputs enabled			1		1.5		1	
ΔICC			Outputs disabled			0.05		1		0.05	mA
	VCC OF GIAD	Control inputs				1.5		1.5		1.5	
Ci	V _I = 2.5 V or 0.5 V		Control inputs		3						pF
C _{io}	V _O = 2.5 V or 0.5 V		A or B ports		8.5						pF

[†] All typical values are at $V_{CC} = 5 \text{ V}$.

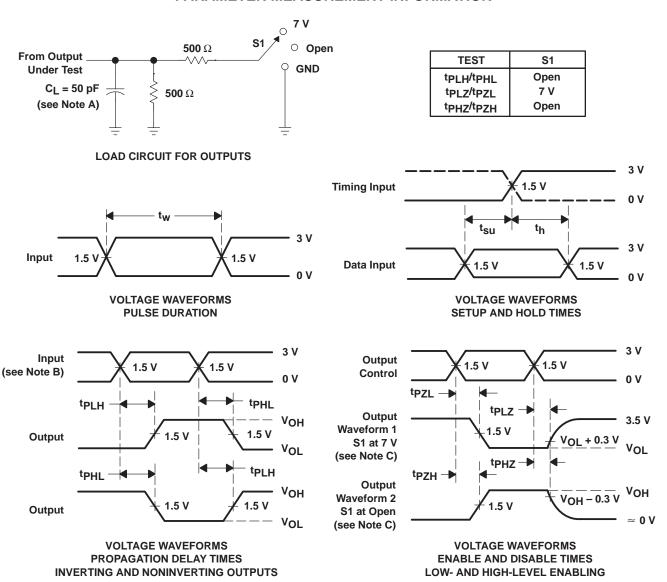
This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.

[‡] On products compliant to MIL-STD-883, Class B, this parameter does not apply.

[§] The parameters IOZH and IOZL include the input leakage current.

[¶] This data sheet limit may vary among suppliers.

[#]Not more than one output should be tested at a time, and the duration of the test should not exceed one second.


SN54ABT16245, SN74ABT16245 **16-BIT BUS TRANSCEIVERS** WITH 3-STATE OUTPUTS SCBS084B – D3712, JANUARY 1991 – REVISED DECEMBER 1992

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, T _A = 25°C		SN54ABT16245		SN74ABT16245		UNIT	
	(INFOT)	(001F01)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	A or B	B or A	1	2.2	3.4	0.5	4	1	3.9	ns
t _{PHL}	AUID		1	2.1	3.8	0.5	4.6	1	4.5	115
^t PZH	OE	P.or A	1	3.1	4.4	0.8	5.5	1	5.4	
tPZL	OE	B or A	1	3	6.1	0.9	7.3	1	7.2	ns
t _{PHZ}	OE	P.or A	1.3	3.5	4.7	1.3	6.3	1.3	5.5	
tPLZ		B or A	1.4	3.2	4.7	1.4	5.3	1.4	5.2	ns

SCBS084B - D3712, JANUARY 1991 - REVISED DECEMBER 1992

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated