查询SN54ABT16543供应商

捷多邦,专业PCSN54ABT46543 念N译4ABT16543 16-BIT REGISTERED TRANSCEIVERS WITH 3-STATE OUTPUTS SCBS087C - FEBRUARY 1991 - REVISED JANUARY 1997

- Members of the Texas Instruments *Widebus*[™] Family
- State-of-the-Art *EPIC-*II*B*™ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical V_{OLP} (Output Ground Bounce) < 1 V at V_{CC} = 5 V, T_A = 25°C
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB
 Layout
- High-Drive Outputs (–32-mA I_{OH}, 64-mA I_{OL})
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings

description

The 'ABT16543 16-bit registered transceivers contain two sets of D-type latches for temporary storage of data flowing in either direction. The 'ABT16543 can be used as two 8-bit transceivers or one 16-bit transceiver. Separate latch-enable (<u>LEAB</u> or <u>LEBA</u>) and output-enable (<u>OEAB</u> or <u>OEBA</u>) inputs are provided for each register to permit independent control in either direction of data flow.

The A-to-B enable (CEAB) input must be low to enter data from A or to output data from B. If CEAB is low and LEAB is low, the A-to-B latches are transparent; a subsequent low-to-high transition of LEAB puts the A latches in the storage mode. With CEAB and OEAB both low, the 3-state B outputs are active and reflect the data present at the output of the A latches. Data flow from B to A is similar but requires using the CEBA, LEBA, and OEBA inputs.

SN54ABT16 SN74ABT16543		G OF	
1OEAB	$_{1}$ \cup	56	1 OEBA
	2	55	1LEBA
1CEAB		- H. F	1CEBA
GND	3	54] GND
2	4	53	
1A1 L	5	52] 1B1
1A2	6	51] 1B2
Vcc	7	50	V _{CC}
1A3 _	8	49	1B3
1A4 L	9	48] 1B4
1A5 🛛	10	47] 1B5
GND 🛛	11	46] GND
1A6	12	45] 1B6
1A7	13	44	1B7
1A8	14	43	1B8
2A1	15	42	_ Т2В1
2A2	16	41] 2B2
2A3	17	40]] 2B3
	18	39	
2A4	19	38] 2B4
2A5	20	37] 2B5
2A6	20	36	2B6
		- 1	
V _{CC}	22	35	
2A7	23	34] 2B7
2A8	24	33	_2B8
GND	25	32	GND
2CEAB	26	31	2CEBA
2LEAB	27	30	2LEBA
2 <mark>0EAB</mark>	28	29	20EBA

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54ABT16543 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ABT16543 is characterized for operation from –40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

debus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

SN54ABT16543, SN74ABT16543 16-BIT REGISTERED TRANSCEIVERS WITH 3-STATE OUTPUTS SCBS087C – FEBRUARY 1991 – REVISED JANUARY 1997

FUNCTION TABLE[†] (each 8-bit section)

	(eac	n o-bit sec	stion)	
	INPU	JTS		OUTPUT
CEAB	LEAB	OEAB	Α	В
Н	Х	Х	Х	Z
Х	Х	Н	Х	Z
L	Н	L	Х	в ₀ ‡
L	L	L	L	L
L	L	L	Н	Н

[†] A-to-B data flow is shown; B-to-A flow control is the same except that it uses CEBA, LEBA, and OEBA. [‡]Output level before the indicated steady-state input

conditions were established

SN54ABT16543, SN74ABT16543 16-BIT REGISTERED TRANSCEIVERS WITH 3-STATE OUTPUTS

1B1

1B2

1**B**3

1B4

1B5

1B6

1B7

1**B**8

2B1

2B2

2B3

2B4

2B5

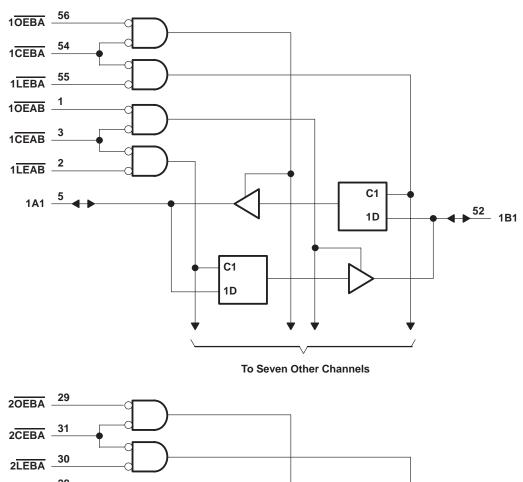
2B6

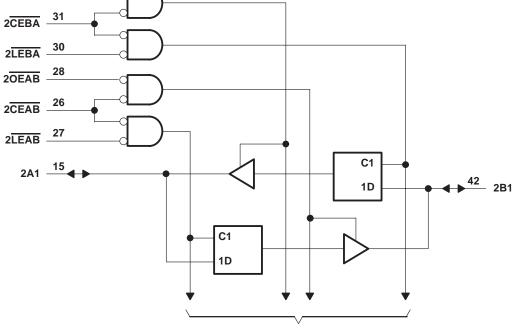
2B7

2B8

SCBS087C - FEBRUARY 1991 - REVISED JANUARY 1997

56 1EN3 10EBA 54 G1 1CEBA 55 1LEBA 1C5 1 10EAB 2EN4 3 G2 1CEAB 2 2C6 1LEAB 29 **7EN9** 20EBA 31 G7 2CEBA 30 7C11 2LEBA 28 20EAB 8EN10 26 2CEAB G8 27 2LEAB 8C12 52 5 1A1 5D ∇3 6D 4 ▽ 6 51 1A2 8 49 1A3 9 48 1A4 -47 10 1A5 4 45 12 1A6 \leftrightarrow 44 13 1A7 ← 14 43 1A8 4-) 15 42 11D 2A1 ⊽9 12D **10**∇ 16 41 2A2 4-1 17 40 2A3 \leftrightarrow 38 19 2A4 ↔ 20 37 2A5 \leftrightarrow 21 36 2A6 \leftarrow 34 23 2A7 **-**24 33 2A8 -


[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


logic symbol[†]

SN54ABT16543, SN74ABT16543 16-BIT REGISTERED TRANSCEIVERS WITH 3-STATE OUTPUTS SCBS087C - FEBRUARY 1991 - REVISED JANUARY 1997

logic diagram (positive logic)

To Seven Other Channels

SCBS087C – FEBRUARY 1991 – REVISED JANUARY 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	
Input voltage range, V _I (except I/O ports) (see Note 1)	
Voltage range applied to any output in the high or power-off state, V _O	
Current into any output in the low state, I _O : SN54ABT16543	96 mA
SN74ABT16543	128 mA
Input clamp current, I _{IK} (V _I < 0)	–18 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ _{JA} (see Note 2): DGG package	81°C/W
DL package	74°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51.

recommended operating conditions (see Note 3)

			SN54AB1	16543	SN74AB1	Г16543	UNIT
			MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage		4.5	5.5	4.5	5.5	V
VIH	High-level input voltage		2		2		V
VIL	Low-level input voltage			0.8		0.8	V
VI	Input voltage		0	VCC	0	VCC	V
ЮН	High-level output current			-24		-32	mA
IOL	Low-level output current	ent		48		64	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
TA	Operating free-air temperature		-55	125	-40	85	°C

NOTE 3: Unused pins (input or I/O) must be held high or low to prevent them from floating.

SN54ABT16543, SN74ABT16543 16-BIT REGISTERED TRANSCEIVERS WITH 3-STATE OUTPUTS SCBS087C - FEBRUARY 1991 - REVISED JANUARY 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	DAMETER	TEST CONDITIONS		T _A = 25°C			SN54AB	Г16543	SN74ABT16543		
PA	RAMETER	TEST CO	TEST CONDITIONS		TYP [†]	MAX	MIN	MAX	MIN	MAX	UNIT
VIK		V _{CC} = 4.5 V,	l _l = –18 mA			-1.2		-1.2		-1.2	V
		V _{CC} = 4.5 V,	I _{OH} = -3 mA	2.5			2.5		2.5		
		V _{CC} = 5 V,	I _{OH} = –3 mA	3			3		3		V
VOH		V _{CC} = 4.5 V	I _{OH} = -24 mA	2			2				V
		VCC = 4.5 V	I _{OH} = -32 mA	2*					2		
Val		V _{CC} = 4.5 V	I _{OL} = 48 mA			0.55		0.55			V
VOL		VCC = 4.5 V	I _{OL} = 64 mA			0.55*				0.55	v
V _{hys}					100						mV
ų	Control inputs	V _{CC} = 5.5 V,	VI = V _{CC} or GND			±1		±1		±1	μA
	A or B ports		1 00 1			±100		±100		±100	
^I оzн [‡]		V _{CC} = 5.5 V,	V _O = 2.7 V			50**		10		50	μA
IOZL [‡]		V _{CC} = 5.5 V,	V _O = 0.5 V			-50**		-10		-50	μΑ
loff		V _{CC} = 0,	VI or VO \leq 4.5 V			±100				±100	μA
ICEX		V _{CC} = 5.5 V, V _O = 5.5 V	Outputs high			50		50		50	μΑ
ΙΟ§		V _{CC} = 5.5 V,	V _O = 2.5 V	-50	-100	-200	-50	-200	-50	-200	mA
		V _{CC} = 5.5 V,	Outputs high			2		2		2	
ICC	A or B ports	$I_{O} = 0,$	Outputs low			35		35		35	mA
	$V_I = V_{CC}$ or GND	Outputs disabled			2		2		2		
∆ICC¶		$V_{CC} = 5.5 V$, One in Other inputs at V_{CC}				0.5		0.5		0.5	mA
Ci	Control inputs	V _I = 2.5 V or 0.5 V			3						pF
Cio	A or B ports	V _O = 2.5 V or 0.5 V			8.5						pF

* On products compliant to MIL-PRF-38535, this parameter does not apply.

** These limits apply only to the SN74ABT16543.

[†] All typical values are at $V_{CC} = 5$ V.

[‡] The parameters I_{OZH} and I_{OZL} include the input leakage current.

§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

 \P This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

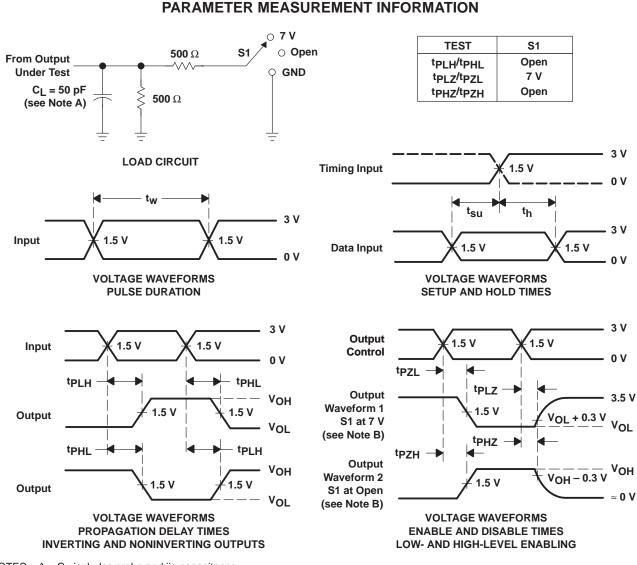
			V _{CC} =	= 5 V, 25°C	SN54AB	16543	SN74AB1	Г16543	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
t _W	Pulse duration, LEAB or LEBA low		4		4		4		ns
		High	1.5		1.5		1.5		
۲su	t_{su} Setup time, data before \overline{LEAB} or \overline{LEBA}	Low	3.5		3.5		3.5		ns
t.		High	1.5		1.5		1.5		
th	Hold time, data after $\overline{LEAB}\uparrow$ or $\overline{LEBA}\uparrow$	Low	2		2		2		ns

SN54ABT16543, SN74ABT16543 16-BIT REGISTERED TRANSCEIVERS WITH 3-STATE OUTPUTS

SCBS087C - FEBRUARY 1991 - REVISED JANUARY 1997

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		CC = 5 V A = 25°C		MIN	МАХ	UNIT
			MIN	TYP	MAX			
^t PLH	A or B	B or A	0.8	2.5	3.3	0.8	3.9	ns
^t PHL		BUIA	0.9	2.7	4.4	0.9	5.2	115
^t PLH	LE	A or B	1	3.1	4.3	1	5.3	ns
^t PHL		AUD	1.2	3.3	4.8	1.2	5.7	115
^t PZH		A or B	0.8	3.4	4.3	0.8	5.3	ns
^t PZL	OE	AUID	1.1	3.8	7	1.1	7.9	115
^t PHZ		A or B	1.9	4	6.3	1.9	7.2	
^t PLZ	OE	AUID	1.6	3.3	4.6	1.6	5	ns
^t PZH		A or B	0.9	3.8	4.9	0.9	6.3	
^t PZL	CE	AUID	1.2	4.2	6.8	1.2	7.9	ns
^t PHZ	CE	A or B	2	4.5	6.4	2	7.3	-
^t PLZ	UE UE	AUID	1.7	3.9	5.1	1.7	5.6	ns


switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

				SN7	4ABT16	543		
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V ₍ Tj	CC = 5 V A = 25°C	l, ;	MIN	MAX	UNIT
			MIN	TYP	MAX			
t _{PLH}	A or B	B or A	1	2.5	3.3	1	3.8	ns
^t PHL	AUD	DUIX	1	2.7	4.4	1	5.1	115
^t PLH	LE	A or B	1	3.1	4.3	1	5.2	ns
^t PHL		AUD	1.2	3.3	4.8	1.2	5.6	115
^t PZH	OE	A or B	1	3.4	4.3	1	5.2	ns
^t PZL	ÛE	AUD	1.1	3.8	5.9	1.1	7	115
^t PHZ	OE	A or B	1.9	4	5	1.9	5.7	ns
^t PLZ	ÛE	AUD	1.6	3.3	4.2	1.6	4.6	115
^t PZH	CE	A or B	1	3.8	4.9	1	6.2	ns
tPZL	UE UE	AUD	1.2	4.2	6.5	1.2	7.8	115
^t PHZ	CE	A or B	2	4.5	5.6	2	6.6	ns
^t PLZ	UE I	AUID	1.7	3.9	5.1	1.7	5.4	115

SN54ABT16543, SN74ABT16543 16-BIT REGISTERED TRANSCEIVERS WITH 3-STATE OUTPUTS


SCBS087C - FEBRUARY 1991 - REVISED JANUARY 1997

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns. t_f \leq 2.5 ns.

D. The outputs are measured one at a time with one transition per measurement.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated