查询SN54LVTH16501供应商

速多邦, 专业SAB4推VTH16501加SN74LVTH16501 3.3-VABT 18-BIT UNIVERSAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SN54LVTH16501 . . . WD PACKAGE

SN74LVTH16501 ... DGG OR DL PACKAGE

(TOP VIEW)

SCBS700D - JULY 1997 - REVISED APRIL 1999

- Members of the Texas Instruments *Widebus™* Family
- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low Static-Power Dissipation
- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V_{CC})
- Support Unregulated Battery Operation Down to 2.7 V
- UBT[™] (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
- Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- I_{off} and Power-Up 3-State Support Hot Insertion
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB
 Layout
- Latch-Up Performance Exceeds 500 mA Per JESD 17
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Package Options Include Plastic Shrink Small-Outline (DL) and Thin Shrink
 Small-Outline (DGG) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings

description

The 'LVTH16501 devices are 18-bit universal bus transceivers designed for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the devices operate in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A data is stored in the latch/flip-flop on the low-to-high transition of CLKAB. When OEAB is high, the outputs are active. When OEAB is low, the outputs are in the high-impedance state.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

debus and UBT are trademarks of Texas Instruments Incorporated.

THE ESS OT PERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to predications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all narameters

	(101		
			TE HEADY
OEAB			GND
LEAB			CLKAB
A1			B1
GND			GND
A2] B2
A3] B3
V _{CC}	7	50] V _{CC}
A4		49] B4
A5	9	48] B5
A6	10	47] B6
GND	11	46] GND
A7	12] B7
A8	13	44] B8
A9	14	43] B9
A10	15	42] B10
A11	16	41] B11
A12	17	40] B12
GND	18	39] GND
A13	19	38] B13
A14	20	37] B14
A15	21	36] B15
V _{CC}	22	35] V _{CC}
A16			B16
A17	24	33] B17
GND	25	32] GND
A18] B18
	27] CLKBA
LEBA	28	29] GND

SCBS700D – JULY 1997 – REVISED APRIL 1999

description (continued)

Data flow for B to A is similar to that of A to B but uses OEBA, LEBA, and CLKBA. The output enables are complementary (OEAB is active high and OEBA is active low).

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

When V_{CC} is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, \overline{OE} should be tied to V_{CC} through a pullup resistor and OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.

These devices are fully specified for hot-insertion applications using I_{off} and power-up 3-state. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

The SN54LVTH16501 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74LVTH16501 is characterized for operation from -40° C to 85° C.

T ONOTION TABLE!										
	INP	UTS		OUTPUT						
OEAB	LEAB	CLKAB	Α	В						
L	Х	Х	Х	Z						
н	Н	Х	L	L						
н	Н	Х	Н	н						
н	L	=	L	L						
н	L	\uparrow	н	н						
н	L	Н	Х	в ₀ ‡						
н	L	L	Х	в ₀ ‡ в ₀ §						
+										

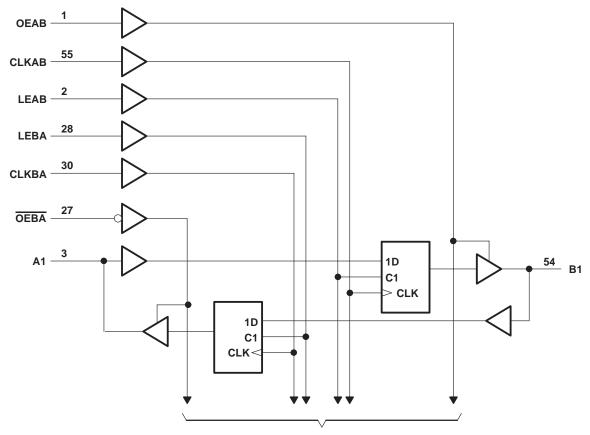
FUNCTION TABLE[†]

⁺ A-to-B data flow is shown: B-to-A flow is similar but uses OEBA, LEBA, and CLKBA.

- [‡]Output level before the indicated steady-state input conditions were established, provided that CLKAB was high before LEAB went low
- § Output level before the indicated steady-state input conditions were established

SCBS700D - JULY 1997 - REVISED APRIL 1999

1 EN1 OEAB 55 CLKAB > 2C3 2 LEAB C3 G2 27 EN4 OEBA 30 CLKBA > 5C6 28 LEBA C6 G5 54 3 3D **B1** A1 1 1∇ 4∇ 1 6D 5 52 A2 **B2** 6 51 A3 **B**3 8 49 A4 **B4** 9 48 A5 **B5** 10 47 **B6** A6 4 12 45 A7 **B7** -13 44 **A8 B8** 4-1 14 43 A9 **B**9 15 42 A10 B10 16 41 A11 B11 17 40 A12 B12 19 38 B13 A13 ↔ 20 37 A14 B14 4 21 36 B15 A15 4 34 23 **B16** A16 24 33 A17 B17 4 31 26 A18 B18 4


[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic symbol[†]

SN54LVTH16501, SN74LVTH16501 3.3-V ABT 18-BIT UNIVERSAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS SCBS700D - JULY 1997 - REVISED APRIL 1999

logic diagram (positive logic)

To 17 Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Voltage range applied to any output in the high-impedance or power-off state, V _O (see Note 1)	Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1)	
$eq:state_$		
$\begin{array}{c} Current into any output in the low state, I_O: $N54LVTH16501$	or power-off state, V _O (see Note 1)	$\dots \dots \dots \dots -0.5$ V to 7 V
$\begin{array}{c} \text{SN74LVTH16501} & 128 \text{ mA} \\ \text{Current into any output in the high state, I}_O (see Note 2): \\ \text{SN54LVTH16501} & 48 \text{ mA} \\ \text{SN74LVTH16501} & 64 \text{ mA} \\ \text{Input clamp current, I}_{IK} (V_I < 0) & -50 \text{ mA} \\ \text{Output clamp current, I}_OK (V_O < 0) & -50 \text{ mA} \\ \text{Package thermal impedance, } \theta_{JA} (see Note 3): \\ \text{DL package} & 74^\circ\text{C/W} \\ \end{array}$	Voltage range applied to any output in the high state, V _O (see Note 1)	–0.5 V to V _{CC} + 0.5 V
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Current into any output in the low state, IO: SN54LVTH16501	96 mA
$\label{eq:started} SN74LVTH16501 \dots 64 mA \\ Input clamp current, I_{IK} (V_I < 0) \dots -50 mA \\ Output clamp current, I_{OK} (V_O < 0) \dots -50 mA \\ Package thermal impedance, \theta_{JA} (see Note 3): DGG package \dots 81^\circ C/W \\ DL package \dots 74^\circ C/W \\ \end{tabular}$	SN74LVTH16501	128 mA
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Current into any output in the high state, IO (see Note 2): SN54LVTH16501	48 mA
Output clamp current, I _{OK} (V _O < 0)	SN74LVTH16501	64 mA
Output clamp current, I _{OK} (V _O < 0)	Input clamp current, I _{IK} (V _I < 0)	–50 mA
DL package		
	Package thermal impedance, θ_{JA} (see Note 3): DGG package	81°C/W
Storage temperature range, T _{stg} –65°C to 150°C	DL package	
	Storage temperature range, T _{stg}	–65°C to 150°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This current flows only when the output is in the high state and $V_O > V_{CC}$. 3. The package thermal impedance is calculated in accordance with JESD 51.

SCBS700D - JULY 1997 - REVISED APRIL 1999

recommended operating conditions (see Note 4)

		SN54LVTI	H16501	SN74LVTI	H16501	UNIT	
			MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage		2.7	3.6	2.7	3.6	V
VIH	High-level input voltage		2	N	2		V
VIL	Low-level input voltage		0.8		0.8	V	
VI	Input voltage	4	5.5		5.5	V	
ЮН	High-level output current		1	-24		-32	mA
IOL	Low-level output current		200	48		64	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled	00	10		10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200		200		μs/V
TA	Operating free-air temperature		-55	125	-40	85	°C

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN54LVTH16501, SN74LVTH16501 **3.3-V ABT 18-BIT UNIVERSAL BUS TRANSCEIVERS** WITH 3-STATE OUTPUTS SCBS700D - JULY 1997 - REVISED APRIL 1999

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			4LVTH16	501	SN74					
PAI	RAMEIER	TEST CONDITIONS			TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT		
VIK		V _{CC} = 2.7 V,	lj = -18 mA			-1.2			-1.2	V		
		V_{CC} = 2.7 V to 3.6 V,	I _{OH} = -100 μA	V _{CC} -0.	2		V _{CC} -0.	2				
Varia		V _{CC} = 2.7 V,	I _{OH} =8 mA	2.4	ii		2.4			v		
VOH		V _{CC} = 3 V	I _{OH} = -24 mA	2						v		
		VCC = 3 V	I _{OH} = -32 mA				2					
			I _{OL} = 100 μA			0.2			0.2			
		$V_{CC} = 2.7 V$	I _{OL} = 24 mA			0.5			0.5			
Va			I _{OL} = 16 mA			0.4			0.4	v		
VOL			I _{OL} = 32 mA			0.5	0.5			v		
		V _{CC} = 3 V	I _{OL} = 48 mA			0.55						
			I _{OL} = 64 mA						0.55			
Control inputs	Control inputo	V _{CC} = 3.6 V,	$V_I = V_{CC} \text{ or } GND$			🗴 ±1			±1			
	Control inputs	V _{CC} = 0 or 3.6 V,	r 3.6 V, VI = 5.5 V						10			
	A or B ports‡	V _{CC} = 3.6 V	V _I = 5.5 V		R.	20			20	μΑ		
			$V_I = V_{CC}$		1			1				
			V _I = 0		2	-5			-5	1		
loff	•	V _{CC} = 0,	$V_{I} \text{ or } V_{O} = 0 \text{ to } 4.5 \text{ V}$	C) (±100	μΑ		
		N 2.V	V _I = 0.8 V	75			75					
II(hold)	A or B ports	V _{CC} = 3 V	-75			-75			μA			
. ,		V _{CC} = 3.6 V§,	V _I = 0 to 3.6 V						±500			
IOZPU	-	$\frac{V_{CC}}{OE/OE} = 0$ to 1.5 V, V _O = OE/OE = don't care	0.5 V to 3 V,			±100*			±100	μA		
IOZPD	IOZPD $\frac{V_{CC}}{OE/OE} = 1.5 \text{ V to } 0, \text{ V}_{O} = 0$		0.5 V to 3 V,			±100*			±100	μA		
		V _{CC} = 3.6 V,	Outputs high			0.19			0.19			
ICC	$V_{CC} = 3.6 V,$ $I_{O} = 0,$	Outputs low			5			5	mA			
		$V_{I} = V_{CC}$ or GND	Outputs disabled	0.19			0.19					
ΔI_{CC} ¶		$V_{CC} = 3 \text{ V}$ to 3.6 V, One input at $V_{CC} - 0.6 \text{ V}$, Other inputs at V_{CC} or GND				0.2			0.2	mA		
Ci		V _I = 3 V or 0			4			4		pF		
Cio		$V_{O} = 3 V \text{ or } 0$			10			10		pF		

* On products compliant to MIL-PRF-38535, this parameter is not production tested.

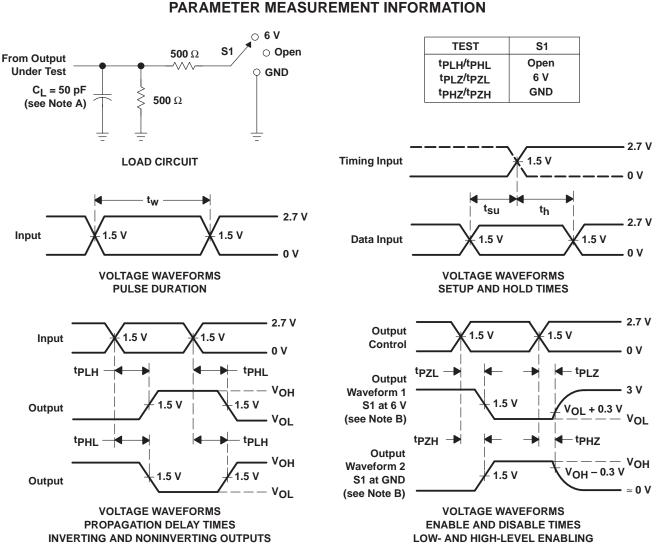
† All typical values are at V_{CC} = 3.3 V, T_A = 25°C. ‡ Unused pins at V_{CC} or GND

§ This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another. \P This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SCBS700D - JULY 1997 - REVISED APRIL 1999

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

				5	SN54LVTH16501			SN74LVTH16501					
			V _{CC} = ± 0.:		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 2.7 V		UNIT		
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
fclock	f _{clock} Clock frequency				150		150		150		150	MHz	
t _w Pulse duration		LE high		3.3		3.3		3.3		3.3		ns	
tw	Fuise duration	CLK high or low		3.3		3.3		3.3		3.3		115	
		A before CLKAB↑		2.3		2.6		2.1		2.4			
	Catura time a	B before CLKBA↑		2.3	4	2.6		2.1		2.4			
^I SU	t _{su} Setup time	·	CLK high	2.6	NUC	1.8		2.4		1.6		ns	
	A or B before LE \downarrow	CLK low	1.6	20	0.7		1.4		0.5				
t liaid times	A or B after CLK↑		1.1	2	0		1		0		20		
h	t _h Hold time	A or B after LE↓		1.8		1.8		1.7		1.7		ns	


switching characteristics over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

		SN54LVTH16501										
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 3.3 V ± 0.3 V V _{CC} =		C = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		/ V _{CC} = 2.7		UNIT	
			MIN	MAX	MIN	MAX	MIN	түр†	MAX	MIN	MAX	
f _{max}			150		150		150			150		MHz
^t PLH	D or A	A or B	1.2	3.9		4.3	1.3	2.7	3.7		4	ns
^t PHL	B or A	AUB	1.2	3.9	M	4.3	1.3	2.4	3.7		4	115
^t PLH	LEBA or LEAB	A or B	1.4	5.5	N.	5.9	1.5	3.4	5.1		5.7	ns
^t PHL	LEDA OI LEAD	AUB	1.4	5.5	4	5.9	1.5	3.5	5.1		5.7	115
^t PLH	CLKBA or	A or B	1.2	5.4		6	1.3	3.5	5.1		5.7	ns
^t PHL	CLKAB	AUB	1.2	5.4		6	1.3	3.4	5.1		5.7	115
^t PZH	OEBA or OEAB	A or B	1.2	5.1		5.8	1.3	3.4	4.8		5.5	ns
^t PZL		AUB	1.2	Q 5.1		5.8	1.3	3.4	4.8		5.5	115
^t PHZ	OEBA or OEAB	A or B	1.6	6.1		6.6	1.7	4.2	5.8		6.3	ns
^t PLZ	OEDA UI ÜEAD	AUB	1.6	6.1		6.6	1.7	3.8	5.8		6.3	115

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.


SCBS700D – JULY 1997 – REVISED APRIL 1999

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.

D. The outputs are measured one at a time with one transition per measurement.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated