

CY74FCT2541T

SCCS041A - September 1994 - Revised June 2000

8-Bit Buffer/Line Driver

Features

- Function and pinout compatible with FCT and F logic
- FCT-C speed at 4.1 ns max. FCT-A speed at 4.8 ns max.
- 25 Ω output series to reduce transmission line reflection noise
- Reduced V_{OH} (typically = 3.3V) versions of equivalent **FCT functions**
- Edge-rate control circuitry for significantly improved noise characteristics
- Power-off disable feature
- ESD > 2000V
- Matched rise and fall times
- · Fully compatible with TTL input and output logic levels
- 12 mA Sink current Source current 15 mA

- Extended commercial temp. range of -40°C to +85°C
- Three-state outputs

Functional Description

The FCT2541T is an octal buffer and line driver designed to be employed as a memory address driver, clock driver, and bus-oriented transmitter/receiver. On-chip termination resistors have been added to the outputs to reduce system noise caused by reflections. The FCT2541T can be used to replace the FCT541T to reduce noise in an existing design. The speed of the FCT2541T is comparable to bipolar logic counterparts while reducing power dissipation. The input and output voltage levels allow direct interface with TTL and CMOS devices without external components.

The outputs are designed with a power-off disable feature to allow for live insertion of boards.

WWW.DZSC.COM **Logic Block Diagram Pin Configurations** OE_B $\overline{\mathsf{OE}}_\mathsf{A}$ SOIC/QSOP **Top View** OEA L 20 VCC D_0 19 OE B 18 D₁ O₀ 17 01 D_2 D_3 16 02 D_3 DΔ 15 Ο3 D_5 14 O_4 13 📘 D_6 O_5 D_5 12 06 D_6 **VV**− 0₆ GND 🛮 11 07 FCT2541T-2 FCT2541T-3 ZE E WWW.B

Function Table^[1]

	Inputs	- 1-Z. FM	
OEA	OEB	D	Output
L	L		275E-V
L		H	AN DE H
H	Н	X	Z

1. H = HIGH Voltage Level L = LOW Voltage Level X = Don't Care Z = High Impedance

Maximum Ratings^[2,3]

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied-65°C to +135°C Supply Voltage to Ground Potential.....-0.5V to +7.0V DC Input Voltage-0.5V to +7.0V DC Output Voltage-0.5V to +7.0V

DC Output Current (Maximum Sink Current/Pin)120 m/	4
Power Dissipation	٧
Static Discharge Voltage>2001\((per MIL-STD-883, Method 3015)	/

Operating Range

Range	Ambient Temperature	V _{cc}		
Commercial	–40°C to +85°C	5V ± 5%		

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Min.	Typ. ^[5]	Max.	Unit
V _{OH}	Output HIGH Voltage	V_{CC} = Min., I_{OH} = -15 mA	2.4	3.3		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 12 mA		0.3	0.55	V
R _{OUT}	Output Resistance	V _{CC} = Min., I _{OL} = 12 mA	20	25	40	Ω
V _{IH}	Input HIGH Voltage		2.0			V
V _{IL}	Input LOW Voltage				0.8	V
V _H	Hysteresis ^[6]	All inputs		0.2		V
V _{IK}	Input Clamp Diode Voltage	V _{CC} = Min., I _{IN} = -18 mA		-0.7	-1.2	V
I	Input HIGH Current	V _{CC} = Max., V _{IN} = V _{CC}			5	μΑ
I _{IH}	Input HIGH Current	V _{CC} = Max., V _{IN} = 2.7V			±1	μΑ
I _{IL}	Input LOW Current	V _{CC} = Max., V _{IN} = 0.5V			±1	μΑ
I _{OZH}	Off State HIGH-Level Output Current	$V_{CC} = Max., V_{OUT} = 2.7V$			15	μА
I _{OZL}	Off State LOW-Level Output Current	$V_{CC} = Max., V_{OUT} = 0.5V$			-15	μА
I _{OS}	Output Short Circuit Current ^[7]	V _{CC} = Max., V _{OUT} = 0.0V	-60	-120	-225	mA
I _{OFF}	Power-Off Disable	V _{CC} = 0V, V _{OUT} = 4.5V			±1	μΑ

Capacitance^[6]

Parameter	Description	Typ. ^[5]	Max.	Unit
C _{IN}	Input Capacitance	5	10	pF
C _{OUT}	Output Capacitance	9	12	pF

Notes:

Unless otherwise noted, these limits are over the operating free-air temperature range.

Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{CC} or ground.

T_A is the "instant on" case temperature.

Typical values are at V_{CC}=5.0V, T_A=+25°C ambient.

This parameter is specified but not tested.

Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high-speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parametric tests. In any sequence of parameter tests, I_{OS} tests should be performed last.

Power Supply Characteristics

Parameter	Description	Test Conditions	Typ. ^[5]	Max.	Unit
I _{CC}	Quiescent Power Supply Current	V_{CC} =Max., V_{IN} ≤0.2V, V_{IN} ≥ V_{CC} -0.2V	0.1	0.2	mA
Δl _{CC}	Quiescent Power Supply Current (TTL inputs)	V _{CC} =Max., V _{IN} =3.4V, ^[8] f ₁ =0, Outputs Open	0.5	2.0	mA
I _{CCD}	Dynamic Power Supply Current ^[9]	$V_{CC}=Max., 50\%$ Duty Cycle, Outputs Open, One Bit Toggling, $\overline{OE}_A=\overline{OE}_B=GND, V_{IN}\leq 0.2V$ or $V_{IN}\geq V_{CC}-0.2V$	0.06	0.12	mA/ MHz
I _C	Total Power Supply Current ^[10]	V_{CC} =Max., 50% Duty Cycle, Outputs Open, One Bit Toggling at f ₁ =10 MHz, \overline{OE}_A = \overline{OE}_B =GND, V_{IN} ≤0.2V or V_{IN} ≥ V_{CC} -0.2V	0.7	1.4	mA
		V_{CC} =Max., 50% Duty Cycle, Outputs Open, One Bit Toggling at f ₁ =10 MHz, \overline{OE}_A = \overline{OE}_B =GND, V_{IN} =3.4V or V_{IN} =GND	1.0	2.4	mA
		V_{CC} =Max., 50% Duty Cycle, Outputs Open, Eight Bits Toggling at f ₁ =2.5 MHz, \overline{OE}_A = \overline{OE}_B =GND, V_{IN} ≤0.2V or V_{IN} ≥ V_{CC} -0.2V	1.3	2.6 ^[11]	mA
		V_{CC} =Max., 50% Duty Cycle, Outputs Open, Eight Bits Toggling at f ₁ =2.5 MHz, \overline{OE}_A = \overline{OE}_B =GND, V_{IN} =3.4V or V_{IN} =GND	3.3	10.6 ^[11]	mA

Switching Characteristics Over the Operating Range^[12]

		CY74FCT2541T		CY74FCT2541AT CY74FCT2541CT			Unit	Fig. No. ^[13]	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.		
t _{PLH} t _{PHL}	Propagation Delay Data to Output	1.5	8.0	1.5	4.8	1.5	4.1	ns	1, 3
t _{PZH} t _{PZL}	Output Enable Time	1.5	10.0	1.5	6.2	1.5	5.8	ns	1, 7, 8
t _{PHZ} t _{PLZ}	Output Disable Time	1.5	9.5	1.5	5.6	1.5	5.2	ns	1, 7, 8

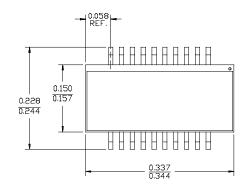
Notes:

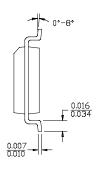
- 8. Per TTL driven input (V_{IN} =3.4V); all other inputs at V_{CC} or GND.
- This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
- $= I_{\text{QUIESCENT}} + I_{\text{INPUTS}} + I_{\text{DYNAMIC}}$ $= I_{\text{CC}} + \Delta I_{\text{CC}} D_{\text{H}} N_{\text{T}} + I_{\text{CCD}} (f_0/2 + f_1 N_1)$ = Quiescent Current with CMOS input levels
 - I_{CC} = Quiescent Current with CMOS input levels
 ΔI_{CC} = Power Supply Current for a TTL HIGH input (V_{IN}=3.4V)
 - D_H = Duty Cycle for TTL inputs HIGH N_T = Number of TTL inputs at D_H

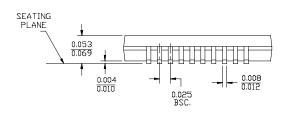
 - = Number of inputs changing at f₁
- All currents are in milliamps and all frequencies are in megahertz.

 11. Values for these conditions are examples of the I_{CC} formula. These limits are specified but not tested.
- Minimum limits are specified but not tested on Propagation Delays.
 See "Parameter Measurement Information" in the General Information section.

Ordering Information

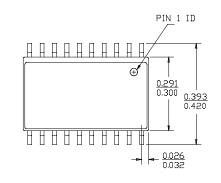

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
4.1	CY74FCT2541CTQCT	Q5	20-Lead (150-Mil) QSOP	Commercial
	CY74FCT2541CTSOC/SOCT	S5	20-Lead (300-Mil) Molded SOIC	
4.8	CY74FCT2541ATQCT	Q5	20-Lead (150-Mil) QSOP	Commercial
	CY74FCT2541ATSOC/SOCT	S5	20-Lead (300-Mil) Molded SOIC	
8.0	CY74FCT2541TQCT	Q5	20-Lead (150-Mil) QSOP	Commercial
	CY74FCT2541TSOC/SOCT	S5	20-Lead (300-Mil) Molded SOIC	

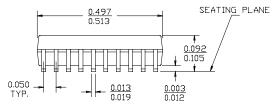

Document #: 38-00342-A

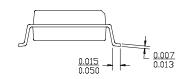


Package Diagrams

20-Lead Quarter Size Outline Q5






DIMENSIONS IN INCHES $\frac{\text{MIN.}}{\text{MAX.}}$ LEAD COPLANARITY 0.004 MAX.

20-Lead (300-Mil) Molded SOIC S5

DIMENSIONS IN INCHES MIN. MAX.
LEAD COPLANARITY 0.004 MAX.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated