－ $5-\Omega$ Switch Connection Between Two Ports
－TTL－Compatible Input Levels
－Designed to Be Used in Level－Shifting Applications
－Package Options Include Plastic Shrink Small－Outline（DL），Thin Shrink Small－Outline（DGG），and Thin Very Small－Outline（DGV）Packages

description

The SN74CBTD16210 provides 20 bits of high－speed TTL－compatible bus switching．The low on－state resistance of the switch allows connections to be made with minimal propagation delay．A diode to V_{CC} is integrated in the circuit to allow for level shifting between $5-\mathrm{V}$ inputs and 3．3－V outputs．

The device is organized as a dual 10－bit bus switch with separate output－enable（ $\overline{\mathrm{OE})}$ ）inputs．It can be used as two 10－bit bus switches or as one 20 －bit bus switch．When $\overline{O E}$ is low，the associated 10 －bit bus switch is on，and port A is connected to port B ．When $\overline{O E}$ is high，the switch is open，and a high－impedance state exists between the ports．

The SN74CBTD16210 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ．

NC－No internal connection

FUNCTION TABLE
（each 10－bit bus switch）

INPUT $\overline{\mathrm{OE}}$	FUNCTION
L	A port＝B port
H	Z

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, V_{CC}		-0.5 V to 7 V
Input voltage range, V_{I} (see Note 1)		-0.5 V to 7 V
Continuous channel current		128 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{1}<0\right)$		0 mA
Package thermal impedance, $\theta_{\text {JA }}$ (see Note 2)	DGG package	$70^{\circ} \mathrm{C} / \mathrm{W}$
	DGV package	$58^{\circ} \mathrm{C} / \mathrm{W}$
	DL package	$63^{\circ} \mathrm{C} / \mathrm{W}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$		${ }^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
esses beyond those listed under "absolute maximum ratings" ctional operation of the device at these or any other conditio plied. Exposure to absolute-maximum-rated conditions for ex	may cause permanen beyond those ind nded periods may	satings only, and conditions" is not
ES: 1. The input and output negative-voltage ratings may 2. The package thermal impedance is calculated in ac	exceeded if the ordance with JESD	e observed.

recommended operating conditions (see Note 3)

		MIN	MAX
V_{CC}	UNIT		
V_{IH}	High-level control input voltage	4.5	5.5
$\mathrm{~V}_{\mathrm{IL}}$	Low-level control input voltage	2	
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature	V	

[^0]electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	TYP†	MAX	UNIT
V_{IK}		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	II $=-18 \mathrm{~mA}$				-1.2	V
V_{OH}		See Figure 2						
I		$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$				10	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ or GND				± 1	
ICC		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{l} \mathrm{O}=0$,	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND			1.5	mA
$\mathrm{\Delta I}_{\mathrm{CC}}{ }^{\ddagger}$	Control inputs	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	One input at 3.4 V,	Other inputs at V_{CC} or GND			2.5	mA
C_{i}	Control inputs					4.5		pF
$\mathrm{Cio}_{\text {(OFF) }}$		$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0, $\quad \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CC}}$	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CC}}$			5.5		pF
$r_{0 n} \S$		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{V}_{1}=0$	I $=64 \mathrm{~mA}$		5	7	Ω
		I $=30 \mathrm{~mA}$			5	7		
		$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}, \quad \mathrm{I}=15 \mathrm{~mA}$		35	50			

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
§ Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by the lowest voltage of the two (A or B) terminals.
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO (OUTPUT)	MIN	MAX	UNIT
$t_{p d}{ }^{\text {I }}$	A or B	B or A		0.25	ns
ten	$\overline{\mathrm{OE}}$	A or B	1.5	9.8	ns
$\mathrm{t}_{\text {dis }}$	$\overline{\mathrm{OE}}$	A or B	1.5	8.9	ns

IThe propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

PARAMETER MEASUREMENT INFORMATION

TEST	S1
$\mathrm{t}_{\text {pd }}$	Open
$\mathrm{tPLZ}^{\prime} \mathrm{tPZL}$	7 V
$\mathrm{tPHZ}^{\prime} \mathrm{tPZH}$	Open

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. $t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{\text {dis. }}$.
F. $t_{P Z L}$ and $t P Z H$ are the same as ten.
G. $\quad t P L H$ and $t_{P H L}$ are the same as $t_{p d}$.

Figure 1. Load Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS

Figure 2. V_{OH} Values

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.
In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

[^0]: NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

