

10-BIT FET BUS SWITCH WITH PRECHARGED OUTPUTS
AND ACTIVE-CLAMP UNDERSHOT-PROTECTION CIRCUIT

SCDS107A – APRIL 2000 – REVISED MAY 2000

- 5- Ω Switch Connection Between Two Ports
- TTL-Compatible Input Levels
- Power Off Disables Outputs, Permitting Live Insertion
- Outputs Are Precharged by Bias Voltage to Minimize Signal Distortion During Live Insertion
- Active-Clamp Undershoot-Protection Circuit on the I/Os Clamps Undershoots Down to -2 V
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)
- Package Options Include Plastic Shrink Small-Outline (DBQ), Thin Very Small-Outline (DGV), Small-Outline (DW), and Thin Shrink Small-Outline (PW) Packages

DBQ, DGV, DW, OR PW PACKAGE
(TOP VIEW)

description

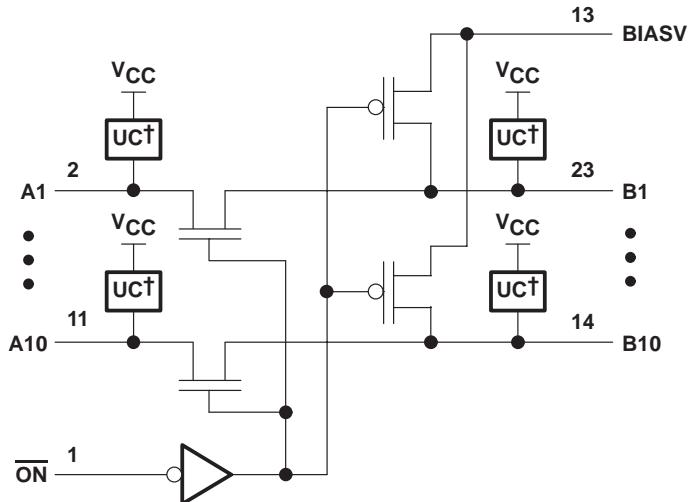
The SN74CBTK6800 device provides ten bits of high-speed TTL-compatible bus switching. The low on-state resistance of the switch allows bidirectional connections to be made while adding near-zero propagation delay. The device also precharges the B port to a user-selectable bias voltage (BIASV) to minimize live-insertion noise.

The A and B ports have an active-clamp undershoot-protection circuit. When there is an undershoot, the active-clamp circuit is enabled and current from V_{CC} is supplied to clamp the output, preventing the pass transistor from turning on.

The SN74CBTK6800 is organized as one 10-bit switch with a single enable (ON) input. When ON is low, the switch is on and port A is connected to port B. When ON is high, the switch between port A and port B is open. When ON is high or V_{CC} is 0 V, B port is precharged to BIASV through the equivalent of a 10-k Ω resistor.

The SN74CBTK6800 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE


INPUT ON	FUNCTION
L	A port = B port
H	A port = Z B port = BIASV

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SN74CBTK6800
10-BIT FET BUS SWITCH WITH PRECHARGED OUTPUTS
AND ACTIVE-CLAMP UNDERSHOOT-PROTECTION CIRCUIT

SCDS107A – APRIL 2000 – REVISED MAY 2000

logic diagram (positive logic)

† Undershoot clamp

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply voltage range, V_{CC}	–0.5 V to 7 V
Bias voltage range, $BIASV$	–0.5 V to 7 V
Input voltage range, V_I (see Note 1)	–0.5 V to 7 V
Continuous channel current	128 mA
Input clamp current, I_{IK} ($V_I < 0$)	–50 mA
Package thermal impedance, θ_{JA} (see Note 2):	
DBQ package	61°C/W
DGV package	86°C/W
DW package	46°C/W
PW package	88°C/W
Storage temperature range, T_{stg}	–65°C to 150°C

‡ Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 2. The package thermal impedance is calculated in accordance with JEDEC 51.

recommended operating conditions (see Note 3)

		MIN	MAX	UNIT
V_{CC}	Supply voltage	4	5.5	V
$BIASV$	Supply voltage	1.3	V_{CC}	V
V_{IH}	High-level control input voltage	2		V
V_{IL}	Low-level control input voltage		0.8	V
T_A	Operating free-air temperature	–40	85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SN74CBTK6800
10-BIT FET BUS SWITCH WITH PRECHARGED OUTPUTS
AND ACTIVE-CLAMP UNDERSHOOT-PROTECTION CIRCUIT
SCDS107A – APRIL 2000 – REVISED MAY 2000

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	TYP [†]	MAX	UNIT
V _{IK}		V _{CC} = 4.5 V, I _I = -18 mA					-1.2	V
V _{IKU}		V _{CC} = 5.5 V, 0 mA \geq I _I \geq -50 mA, \overline{OE} = 5.5 V					-2	V
I _I		V _{CC} = 5.5 V, V _I = 5.5 V or GND					± 5	μA
I _{off}		V _{CC} = 0, V _I or V _O = 0 to 5.5 V, BIASV = Open					20	μA
I _O		V _{CC} = 4.5 V, V _O = 0, BIASV = 2.4 V			0.25			mA
I _{CC}		V _{CC} = 5.5 V, V _I = V _{CC} or GND, I _O = 0					20	μA
ΔI_{CC}^{\ddagger}	Control inputs	V _{CC} = 5.5 V, One input at 3.4 V, Other inputs at V _{CC} or GND					2.5	mA
C _i	Control inputs	V _I = 3 V or 0					3	pF
C _{o(OFF)}		V _O = 3 V or 0, Switch off			8.5			pF
r _{on} [§]	V _{CC} = 4 V, TYP at V _{CC} = 4 V	V _I = 2.4 V, I _I = 15 mA			11	20		Ω
		V _I = 0	I _I = 64 mA		3	7		
	V _{CC} = 4.5 V	V _I = 2.4 V, I _I = 30 mA	I _I = 30 mA		3	7		
		V _I = 2.4 V, I _I = 15 mA			6	15		

[†] All typical values are at V_{CC} = 5 V (unless otherwise noted), T_A = 25°C.

[‡] This is the increase in supply current for each input that is at the specified TTL-voltage level rather than V_{CC} or GND.

[§] Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two (A or B) terminals.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

PARAMETER	TEST CONDITIONS	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 4 V		V _{CC} = 5 V ± 0.5 V		UNIT
				MIN	MAX	MIN	MAX	
t _{pd} [¶]		A or B	B or A	0.35		0.25		ns
t _{PZH}	BIASV = GND	ON	A or B	6	2	5.1		ns
t _{PZL}	BIASV = 3 V			6	2	5.6		
t _{PHZ}	BIASV = GND	ON	A or B	5.5	1	5		ns
t _{PLZ}	BIASV = 3 V			5.5	2	5.9		

[¶] The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

SN74CBTK6800

10-BIT FET BUS SWITCH WITH PRECHARGED OUTPUTS AND ACTIVE-CLAMP UNDERSHOOT-PROTECTION CIRCUIT

SCDS107A – APRIL 2000 – REVISED MAY 2000

undershoot characteristics

PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
V_{OUTU}	See Figures 1 and 2, and Table 1	2	$V_{OH}-0.3$		V

† All typical values are at $V_{CC} = 5$ V (unless otherwise noted), $T_A = 25^\circ\text{C}$.

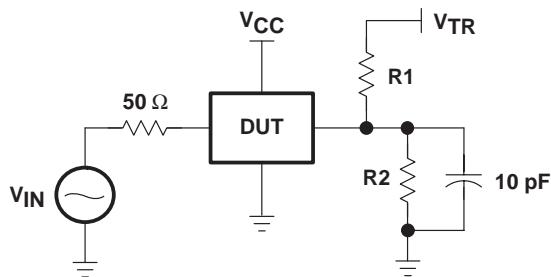


Figure 1. Device Test Setup

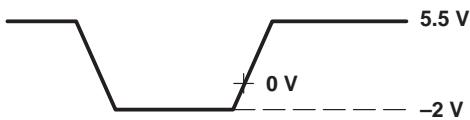
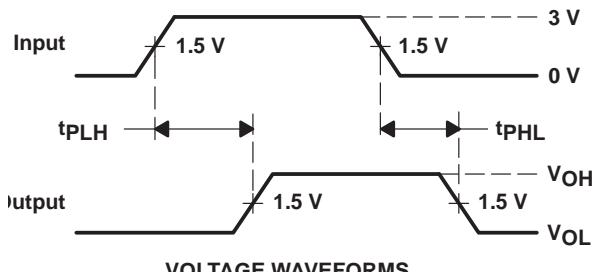
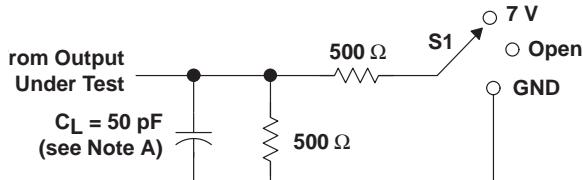
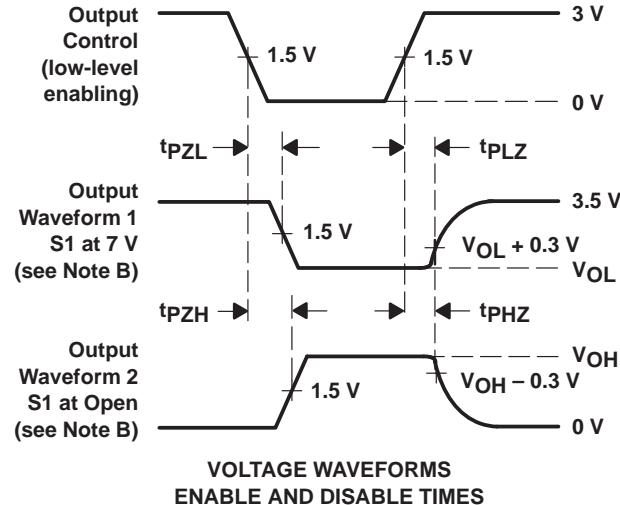


Figure 2. Transient Input Voltage Waveform



Table 1. Device Test Conditions

PARAMETER	VALUE	UNIT
B port under test‡	See Figure 1	
V_{IN}	See Figure 2	V
t_w	20	ns
t_r	2	ns
t_f	2	ns
$R1 = R2$	100	kΩ
V_{TR}	11	V
V_{CC}	5.5	V
BIASV	Open	


‡ Other B-port outputs are open.

SN74CBTK6800
10-BIT FET BUS SWITCH WITH PRECHARGED OUTPUTS
AND ACTIVE-CLAMP UNDERSHOOT-PROTECTION CIRCUIT
SCDS107A – APRIL 2000 – REVISED MAY 2000

PARAMETER MEASUREMENT INFORMATION

TEST	S1
t_{pd}	Open
t_{PLZ}/t_{PZL}	7 V
t_{PHZ}/t_{PZH}	Open

NOTES:

- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r \leq 2.5$ ns, $t_f \leq 2.5$ ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 3. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated