查询SN74ALVCH16835供应商

捷多邦,专业PCB打样工厂,24小时**分时组织**LVCH16835 18-BIT UNIVERSAL BUS DRIVER WITH 3-STATE OUTPUTS SCES053E – SEPTEMBER 1995 – REVISED FEBRUARY 1999

- Member of the Texas Instruments *Widebus*™ Family
- *EPIC*[™] (Enhanced-Performance Implanted CMOS) Submicron Process
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Package Options Include Plastic Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), and Thin Very Small-Outline (DGV) Packages

description

This 18-bit universal bus driver is designed for 1.65-V to 3.6-V V_{CC} operation.

Data flow from A to Y is controlled by the output-enable (OE) input. The device operates in the transparent mode when the latch-enable (LE) input is high. The A data is latched if the clock (CLK) input is held at a high or low logic level. If LE is low, the A data is stored in the latch/flip-flop on the low-to-high transition of CLK. When OE is high, the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

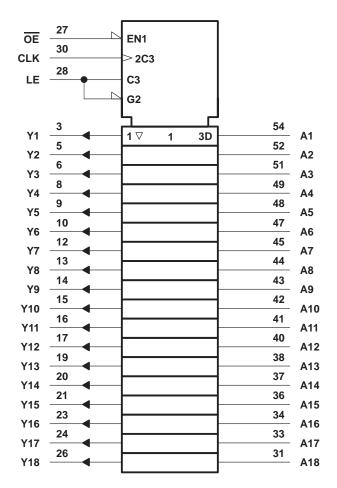
The SN74ALVCH16835 is characterized for operation from -40° C to 85° C.

DGG, DGV (1	, or d fop vii		ACKAGE
(T NC [NC] Y1 [GND] Y2 [Y3] V _{CC}] Y4 [Y5] Y6 [GND] Y10] Y10] Y11] Y12] GND] Y13] Y14] Y15]	1 2 3 4 5 6 7 8 9 10		GND NC A1 GND A2 A3 VCC A4 A5 A6 GND A7 A8 A9 A10 A11 A12 GND A11 A12 GND A13 A14 A15 VCC
Y16	23 24	34 33	A16 A17
	25	32	
4	26	31	A18
	27	30	
ᇉ	28	29	GND

NC - No internal connection

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

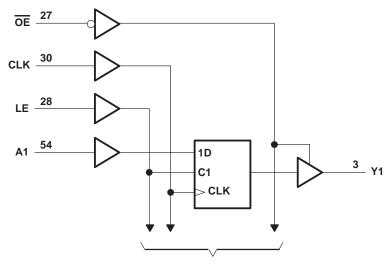
Cand Widebus are trademarks of Texas Instruments Incorporated.


SN74ALVCH16835 **18-BIT UNIVERSAL BUS DRIVER** WITH 3-STATE OUTPUTS SCES053E – SEPTEMBER 1995 – REVISED FEBRUARY 1999

FUNCTION TABLE									
	INPUTS								
OE	LE	CLK	Α	Y					
Н	Х	Х	Х	Z					
L	Н	Х	L	L					
L	Н	Х	Н	н					
L	L	\uparrow	L	L					
L	L	\uparrow	Н	н					
L	L	Н	Х	Y ₀ †					
L	L	L	Х	Y0‡					

[†]Output level before the indicated steady-state input conditions were established, provided that CLK is high before LE goes low

[‡]Output level before the indicated steady-state input conditions were established


logic symbol§

§ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To 17 Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V_{CC} Input voltage range, V_I (see Note 1) Output voltage range, V_O (see Notes 1 and 2) Input clamp current, I_{IK} ($V_I < 0$) Output clamp current, I_{OK} ($V_O < 0$) Continuous output current, I_O Continuous current through each V_{CC} or GND Package thermal impedance, θ_{JA} (see Note 3):	–0.5 V): DGG package DGV package	$\begin{array}{c} -0.5 \mbox{ V to } 4.6 \mbox{ V} \\ to \mbox{ V}_{CC} + 0.5 \mbox{ V} \\50 \mbox{ mA} \\ \pm 50 \mbox{ mA} \\ \pm 100 \mbox{ mA} \\ \mbox{ 1°C/W} \\ \mbox{ 86°C/W} \end{array}$
Storage temperature range, T _{sta}	DL package	
- 0.9		

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. This value is limited to 4.6 V maximum.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
VCC	Supply voltage		1.65	3.6	V
V _{IH} H		V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$		
	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V
		$V_{CC} = 2.7 V \text{ to } 3.6 V$	2		
		V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$	
VIL	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8	
VI	Input voltage		0	VCC	V
Vo	Output voltage		0	VCC	V
		V _{CC} = 1.65 V		-4	
1	Ligh lovel output ourrest	V _{CC} = 2.3 V		-12	
ЮН	High-level output current	$V_{CC} = 2.7 V$		-12	- mA
	OH High-level output current	V _{CC} = 3 V		-24	
		V _{CC} = 1.65 V		4	
1		$V_{CC} = 2.3 V$		12	
IOL	Low-level output current	$V_{CC} = 2.7 V$		12	mA
		V _{CC} = 3 V		24	
$\Delta t/\Delta v$	Input transition rise or fall rate			10	ns/V
TA	Operating free-air temperature		-40	85	°C

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

PA	RAMETER	TEST CC	ONDITIONS	Vcc	MIN	түр†	MAX	UNIT
		I _{OH} = -100 μA		1.65 V to 3.6 V	V _{CC} -0.	2		
		I _{OH} = -4 mA		1.65 V	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	$ O = -100 \ \mu A \\ O = -4 \ m A \\ O = -4 \ m A \\ O = -6 \ m A \\ 2.3 \ V \\ 2.4 \\ 0 O = -12 \ m A \\ 1.65 \ V \ 0.3.6 \ V \\ 2.7 \ V \\ 2.2 \\ 3 \ V \\ 2.4 \\ 0 O = -24 \ m A \\ 3 \ V \\ 2 \\ 10 O = -12 \ m A \\ 1.65 \ V \ 0.3.6 \ V \\ 2.7 \ V \\ 0.4 \\ 10 O = 4 \ m A \\ 1.65 \ V \ 0.3.6 \ V \\ 0.4 \\ 10 O = 4 \ m A \\ 1.65 \ V \ 0.3.6 \ V \\ 0.4 \\ 10 O = 4 \ m A \\ 1.65 \ V \ 0.3.6 \ V \\ 0.4 \\ 10 O = 4 \ m A \\ 1.65 \ V \ 0.3.6 \ V \\ 1.65 \ V \ 0.3.6 \ V \\ 1.65 \ V \\ $							
VOH		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V					
		I _{OH} = -12 mA		2.7 V	2.2			
				3 V	2.4			
		I _{OH} = -24 mA		3 V	2			
		I _{OL} = 100 μA		1.65 V to 3.6 V			0.2	
		I _{OL} = 4 mA		1.65 V			0.45	
\/		IOL = 6 mA		2.3 V			0.4	N/
VOL		1-, 10 mA		2.3 V			0.7	V
		OT = 15 my		2.7 V			0.4	
		$I_{OL} = 24 \text{ mA}$ $V_I = V_{CC} \text{ or GND}$		3 V			0.55	
Ц		$V_{I} = V_{CC}$ or GND		3.6 V			±5	μΑ
		V _I = 0.58 V		1.65 V	25			
		V _I = 1.07 V		1.65 V	-25			
		V _I = 0.7 V		2.3 V	45			
ll(hold)		$V_{I} = 0.58 V$ $V_{I} = 1.07 V$ $V_{I} = 0.7 V$ $V_{I} = 1.7 V$		2.3 V	-45			μA
		V _I = 0.8 V		3 V	75			
		V _I = 2 V		3 V	-75			
		$V_{I} = 0$ to 3.6 V [‡]		3.6 V			±500	
IOZ		$V_{O} = V_{CC}$ or GND		3.6 V			±10	μΑ
ICC		$V_I = V_{CC}$ or GND,	IO = 0	3.6 V			40	μA
∆ICC		One input at V _{CC} – 0.6 V,	Other inputs at V _{CC} or GND	3 V to 3.6 V			750	μA
<u>C</u> .	Control inputs			2.2.1/		3.5		5 5
Ci	Data inputs			3.3 V		6		pF
Co	Outputs	V _O = V _{CC} or GND		3.3 V		7		pF

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. [‡] This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

				V _{CC} =	CC = 1.8 V VCC = 2.5 V ± 0.2 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT	
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
fclock	Clock freq	uency			§		150		150		150	MHz
	Pulse	LE high		§		3.3		3.3		3.3		
tw	duration	duration CLK high or low		§		3.3		3.3		3.3		ns
		Data before CLK↑		§		2.2		2.1		1.7		
t _{su}	Setup time	Data before LE↓	CLK high	§		1.9		1.6		1.5		ns
	unio		CLK low	§		1.3		1.1		1		
4	Hold	Data after CLK↑	-	§		0.6		0.6		0.7		
th	time	Data after LE \downarrow	CLK high or low	§		1.4		1.7		1.4		ns

§ This information was not available at the time of publication.

SN74ALVCH16835 18-BIT UNIVERSAL BUS DRIVER WITH 3-STATE OUTPUTS SCES053E – SEPTEMBER 1995 – REVISED FEBRUARY 1999

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

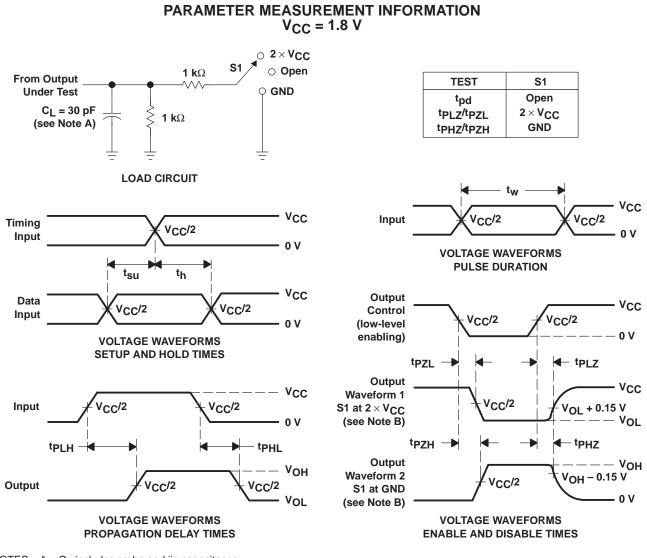
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
		(001201)	MIN	TYP	MIN	MAX	MIN	MAX	MIN	MAX	
f _{max}			†		150		150		150		MHz
	A			†	1	4.2		4.2	1	3.6	
^t pd	LE	Y		†	1.3	5		4.9	1.3	4.2	ns
	CLK			†	1.4	5.5		5.2	1.4	4.5	
t _{en}	OE	Y		†	1.4	5.5		5.6	1.1	4.6	ns
^t dis	OE	Y		†	1	4.5		4.3	1.3	3.9	ns

[†] This information was not available at the time of publication.

switching characteristics from 0°C to 65°C, C_L = 50 pF

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = ± 0.1	UNIT	
		(661161)	MIN	MAX	
^t pd	CLK	Y	1.7	4.5	ns

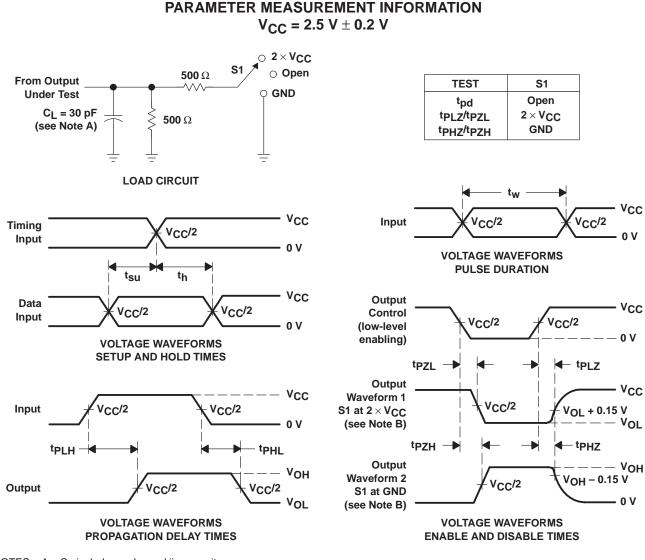
operating characteristics, $T_A = 25^{\circ}C$


PARAMETER		PARAMETER TEST CONDITIONS			$V_{\rm CC} = 1.8 \ V \ V_{\rm CC} = 2.5 \ V \ V_{\rm CC} = 3.3 \ V_{\rm CC} = 3.$		UNIT
			TEST CONDITIONS	TYP	TYP	TYP	UNIT
<u> </u>	Power dissipation	Outputs enabled	C ₁ = 50 pF. f = 10 MHz	†	26	31	рF
Cpd	capacitance	Outputs disabled	$C_{L} = 50 \text{ pF}, \text{ f} = 10 \text{ MHz}$	†	12	14	рг

[†] This information was not available at the time of publication.

SN74ALVCH16835 18-BIT UNIVERSAL BUS DRIVER WITH 3-STATE OUTPUTS

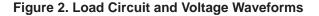
SCES053E - SEPTEMBER 1995 - REVISED FEBRUARY 1999


NOTES: A. $C_{\mbox{L}}$ includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Q = 50 Ω, t_f ≤ 2 ns, t_f ≤ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. tPLH and tPHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

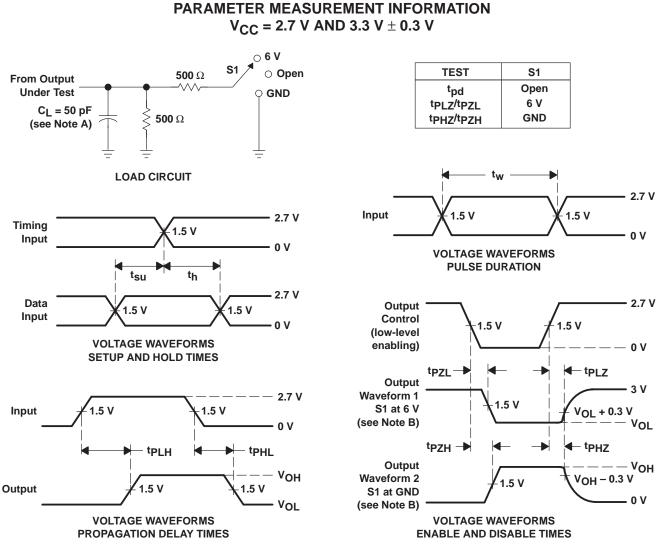
SN74ALVCH16835 18-BIT UNIVERSAL BUS DRIVER WITH 3-STATE OUTPUTS SCES053E – SEPTEMBER 1995 – REVISED FEBRUARY 1999



NOTES: A. CL includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Q = 50 Ω, t_f ≤ 2 ns, t_f ≤ 2 ns.

D. The outputs are measured one at a time with one transition per measurement.


- E. tpLz and tpHz are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tPLH and tPHL are the same as tpd.

SN74ALVCH16835 **18-BIT UNIVERSAL BUS DRIVER** WITH 3-STATE OUTPUTS

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLZ and tpHZ are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated