
- Member of the Texas Instruments
 Widebus™ Family
- EPIC™ (Enhanced-Performance Implanted CMOS) Submicron Process
- DOC[™] (Dynamic Output Control) Circuit Dynamically Changes Output Impedance, Resulting in Noise Reduction Without Speed Degradation
- Less Than 2-ns Maximum Propagation Delay at 2.5-V and 3.3-V V_{CC}
- Dynamic Drive Capability Is Equivalent to Standard Outputs With I_{OH} and I_{OL} of ±24 mA at 2.5-V V_{CC}

- Overvoltage-Tolerant Inputs/Outputs Allow Mixed-Voltage-Mode Data Communications
- I_{off} Supports Partial-Power-Down Mode Operation
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- Package Options Include Plastic Thin Shrink Small-Outline (DGG) and Thin Very Small-Outline (DGV) Packages

description

A Dynamic Output Control (DOC) circuit is implemented, which, during the transition, initially lowers the output impedance to effectively drive the load and, subsequently, raises the impedance to reduce noise. Figure 1 shows typical V_{OL} vs I_{OL} and V_{OH} vs I_{OH} curves to illustrate the output impedance and drive capability of the circuit. At the beginning of the signal transition, the DOC circuit provides a maximum dynamic drive that is equivalent to a high-drive standard-output device. For more information, refer to the TI application reports, *AVC Logic Family Technology and Applications*, literature number SCEA006, and *Dynamic Output Control (DOC™) Circuitry Technology and Applications*, literature number SCEA009.

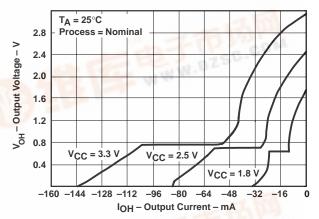


Figure 1. Output Voltage vs Output Current

This 16-bit buffer/driver is operational at 1.2-V to 3.6-V V_{CC} , but is designed specifically for 1.65-V to 3.6-V V_{CC} operation.

The SN74AVC16244 is designed specifically to improve the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

The device can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. It provides true outputs and symmetrical active-low output-enable (\overline{OE}) inputs.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

IC, and Widebus are trademarks of Texas Instruments.

description (continued)

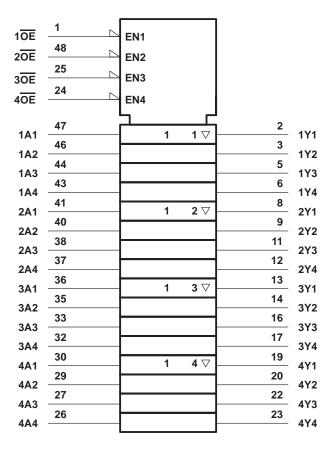
To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The SN74AVC16244 is characterized for operation from -40°C to 85°C.

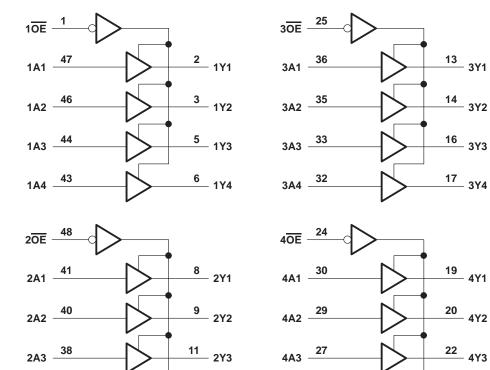
terminal assignments

DGG	OR	DGV	PACKAGE	
	(T	OP VI	IEW)	


1 <mark>OE</mark>	d	1	U	48	Ь	2 <mark>OE</mark>
1Y1	0	2		47	6	1A1
1Y2	d	3		46	b	1A2
GND	d	4		45	b	GND
1Y3	d	5		44	b	1A3
1Y4	d	6		43	þ	1A4
V_{CC}	d	7		42	þ	V_{CC}
2Y1	D	8		41	1	2A1
2Y2	q	9		40	þ	2A2
GND	q	10		39	1	GND
2Y3	q	11		38	þ	2A3
2Y4	q	12		37	1	2A4
3Y1		13		36	1	3A1
3Y2	D	14		35	1	3A2
GND	D	15		34	1	GND
3Y3	D	16		33	1	3A3
3Y4	q	17		32	1	3A4
V_{CC}	q	18		31		V_{CC}
4Y1	q	19		30	1	4A1
4Y2	q	20		29	1	4A2
GND	q	21		28	1	GND
4Y3	q	22		27	1	4A3
4Y4	q	23		26	þ	4A4
40E	Ц	24		25	р	3 <mark>OE</mark>
	ı				ı	

FUNCTION TABLE (each 4-bit buffer)

INP	JTS	OUTPUT
OE	Α	Y
L	L	L
L	Н	Н
Н	Χ	Z


logic symbol†

 $[\]ensuremath{^{\dagger}}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

2Y4

23 4Y4

Supply voltage range, V _{CC}	
Voltage range applied to any output in the high-impedance or power-off state, VO	
(see Note 1)	–0.5 V to 4.6 V
(see Notes 1 and 2)	0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, I _O	±50 mA
Continuous current through each V _{CC} or GND	±100 mA
Package thermal impedance, θ _{JA} (see Note 3): DGG package	70°C/W
DGV package	58°C/W
Storage temperature range, T _{stq}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current rating is observed.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT			
\/	Cumhusaltaga	Operating	1.4	3.6	V			
VCC	Supply voltage	Data retention only	1.2		V			
		V _{CC} = 1.2 V	Vcc					
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	0.65 × V _{CC}	CC				
V _{IH} High-	High-level input voltage	V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}		V			
	C Supply voltage Departing Data retention only Data rete							
		V _{CC} = 3 V to 3.6 V	2	3.6 GND 0.35 × VCC 0.7 0.8 3.6 VCC 3.6 -2 -4 -8 -12 2 4 8 12				
		V _{CC} = 1.2 V		GND				
V _{IL}		V _{CC} = 1.4 V to 1.6 V		0.35 × V _{CC}				
			0.35 × V _{CC}	V				
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7				
		V _{CC} = 3 V to 3.6 V		0.8				
VI	Input voltage		0	3.6	V			
-	Output voltage	Active state	0	Vcc	· v			
	Output voltage	3-state	0	3.6				
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$		-2				
1	O Output voltage	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		-4	4			
OHS		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		-8	mA			
		V _{CC} = 3 V to 3.6 V		-12				
		V _{CC} = 1.4 V to 1.6 V		2				
1	Static law level output outpost	V _{CC} = 1.65 V to 1.95 V		4	mA			
lors	Static low-level output current	V _{CC} = 2.3 V to 2.7 V		8				
		V _{CC} = 3 V to 3.6 V		12				
Δt/Δν	Input transition rise or fall rate	V _{CC} = 1.4 V to 3.6 V		5	ns/V			
TA	Operating free-air temperature		-40	85	°C			

[†] Dynamic drive capability is equivalent to standard outputs with I_{OH} and I_{OL} of ± 24 mA at 2.5-V V_{CC} . See Figure 1 for V_{OL} vs I_{OH} and I_{OH} vs I_{OH} characteristics. Refer to the TI application reports, *AVC Logic Family Technology and Applications*, literature number **SCEA006**, and Dynamic Output Control (DOC™) Circuitry Technology and Applications, literature number SCEA009.

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report,

Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74AVC16244 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS

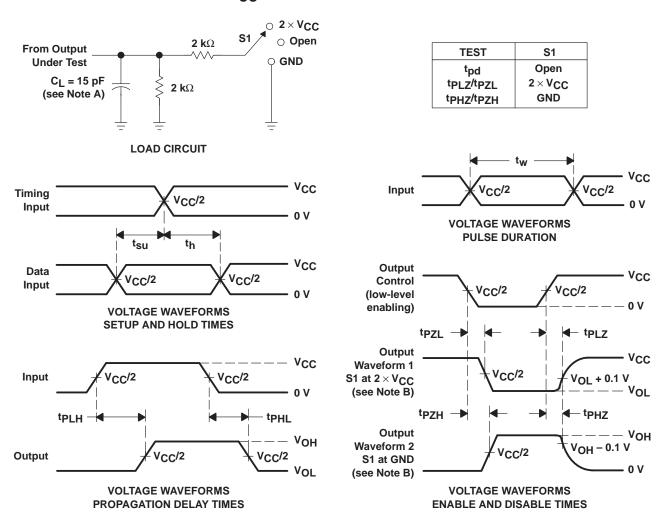
SCES141L - JULY 1998 - REVISED JUNE 2000

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST	CONDITIONS	Vcc	MIN	TYP [†]	MAX	UNIT	
		I _{OHS} = -100 μA		1.4 V to 3.6 V	V _{CC} -0.	.2			
		$I_{OHS} = -2 \text{ mA},$	V _{IH} = 0.91 V	1.4 V	1.05				
Vон		$I_{OHS} = -4 \text{ mA},$	V _{IH} = 1.07 V	1.65 V	1.2			V	
		$I_{OHS} = -8 \text{ mA},$	V _{IH} = 1.7 V	2.3 V	1.75				
		$I_{OHS} = -12 \text{ mA},$	V _{IH} = 2 V	3 V	2.3				
		$I_{OLS} = 100 \mu\text{A}$		1.4 V to 3.6 V			0.2		
		$I_{OLS} = 2 \text{ mA},$	V _{IL} = 0.49 V	1.4 V			0.4		
VOL		$I_{OLS} = 4 \text{ mA},$	V _{IL} = 0.57 V	1.65 V			0.45	V	
		$I_{OLS} = 8 \text{ mA},$	$V_{IL} = 0.7 V$	2.3 V			0.55		
		$I_{OLS} = 12 \text{ mA},$	V _{IL} = 0.8 V	3 V			0.7		
П		$V_I = V_{CC}$ or GND		3.6 V			±2.5	μΑ	
l _{off}		V_I or $V_O = 3.6 V$		0			±10	μΑ	
loz		$V_O = V_{CC}$ or GND		3.6 V			±10	μΑ	
Icc		$V_I = V_{CC}$ or GND,	I _O = 0	3.6 V			40	μΑ	
	Control inputs	Vi – Voe er CND		2.5 V		3.5			
C.		$V_I = V_{CC}$ or GND		3.3 V		3.5		pF	
Ci	Data in muta	Vi – Voe or CND		2.5 V		6		pr	
	Data inputs	AL = ACC OLGIAD	$V_I = V_{CC}$ or GND			6			
C	Outpute	V- V or CND		2.5 V		6.5		p.E	
Со	Outputs	$V_O = V_{CC}$ or GND		3.3 V		6.5		pF	

[†] Typical values are measured at $T_A = 25^{\circ}C$.

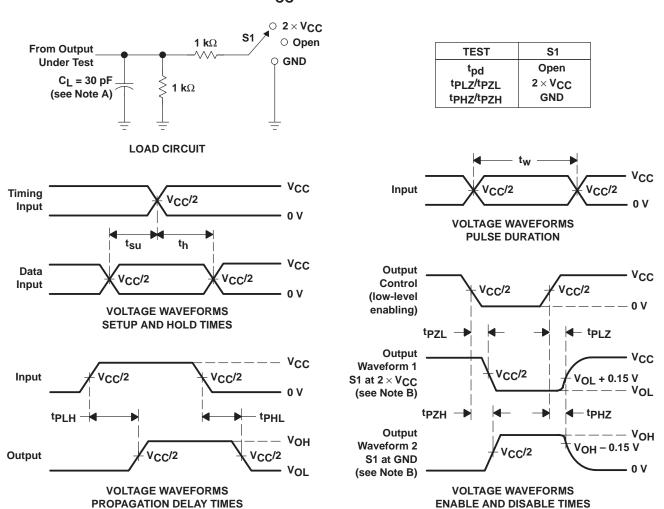
switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 2 through 5)


PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.2 V	V _{CC} =		V _{CC} = ± 0.1		V _{CC} =		V _{CC} =		UNIT
	(1141 01)	(001101)	TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
^t pd	А	Υ	3.1	0.6	3.3	0.7	2.9	0.6	1.9	0.5	1.7	ns
t _{en}	ŌĒ	Υ	7.6	1.4	8	1.3	6.8	0.9	4	0.7	3.5	ns
^t dis	ŌĒ	Υ	7.2	1.7	7.3	1.6	6.2	1	4.3	1	3.5	ns

operating characteristics, T_A = 25°C

PARAMETER		TEST CONDITIONS V _{CC} = 1.8 V V _{CC} = 2.5 V V _{CC} = 1.8 V V _{CC} = 2.5 V V _{CC} = 1.8 V V _{CC} = 2.5 V V _{CC} = 1.8 V V _{CC} = 2.5 V V _{CC} = 1.8 V V _{CC} = 2.5 V V _{CC} = 1.8 V V _{CC} = 2.5 V		V _{CC} = 3.3 V	UNIT		
		TEST CONDITIONS	TYP	TYP	TYP	ONIT	
	Power dissipation Outputs ena		Cı = 0. f = 10 MHz	23	27	33	pF
C _{pd}	capacitance	Outputs disabled	$C_L = 0$, $f = 10 MHz$	0.1	0.1	0.1	рг

PARAMETER MEASUREMENT INFORMATION V_{CC} = 1.2 V AND 1.5 V \pm 0.1 V



- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z $_{\mbox{\scriptsize O}}$ = 50 $\Omega,$ $t_{\mbox{\scriptsize f}}$ \leq 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}$

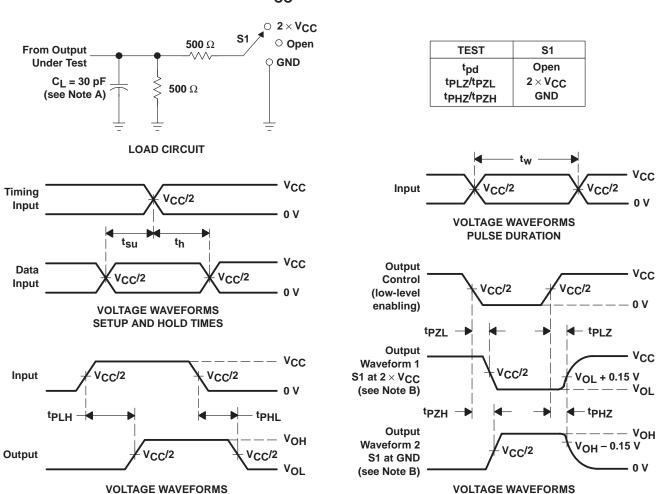
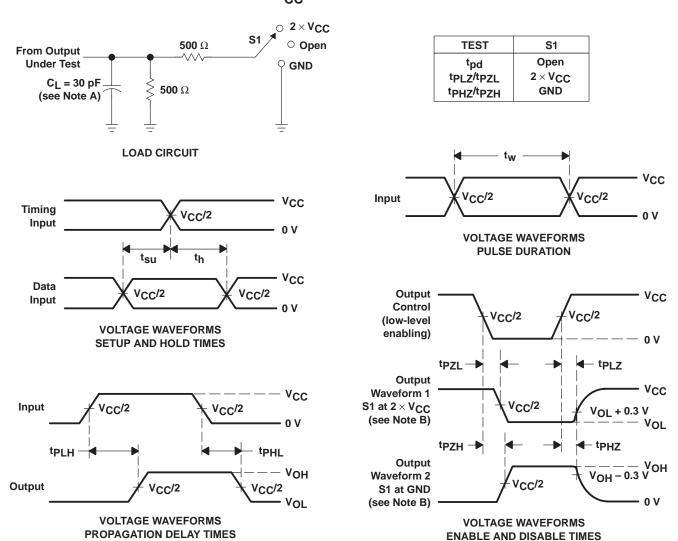

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq 2$ ns, $t_f \leq 2$ ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 3. Load Circuit and Voltage Waveforms

ENABLE AND DISABLE TIMES

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$

- NOTES: A. C_I includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$, $t_f \leq 2$ ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpl 7 and tpHZ are the same as tdis.


PROPAGATION DELAY TIMES

- F. tpZL and tpZH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 4. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$

NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq 2$ ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLZ and tpHZ are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 5. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated