
SCES176I - DECEMBER 1998 - REVISED JUNE 2000

- Member of the Texas Instruments
 Widebus™ Family
- EPIC™ (Enhanced-Performance Implanted CMOS) Submicron Process
- DOC[™] (Dynamic Output Control) Circuit Dynamically Changes Output Impedance, Resulting in Noise Reduction Without Speed Degradation
- Less Than 2-ns Maximum Propagation Delay at 2.5-V and 3.3-V V_{CC}
- Dynamic Drive Capability Is Equivalent to Standard Outputs With I_{OH} and I_{OL} of ±24 mA at 2.5-V V_{CC}

- Overvoltage-Tolerant Inputs/Outputs Allow Mixed-Voltage-Mode Data Communications
- I_{off} Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- Package Options Include Plastic Thin Shrink Small-Outline (DGG) and Thin Very Small-Outline (DGV) Packages

description

A Dynamic Output Control (DOC) circuit is implemented, which, during the transition, initially lowers the output impedance to effectively drive the load and, subsequently, raises the impedance to reduce noise. Figure 1 shows typical V_{OL} vs I_{OL} and V_{OH} vs I_{OH} curves to illustrate the output impedance and drive capability of the circuit. At the beginning of the signal transition, the DOC circuit provides a maximum dynamic drive that is equivalent to a high-drive standard-output device. For more information, refer to the TI application reports, *AVC Logic Family Technology and Applications*, literature number SCEA006, and *Dynamic Output Control (DOC*TM) *Circuitry Technology and Applications*, literature number SCEA009.

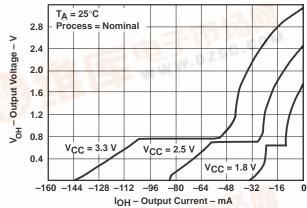


Figure 1. Output Voltage vs Output Current

This 20-bit noninverting buffer/driver is operational at 1.2-V to 3.6-V V_{CC} , but is designed specifically for 1.65-V to 3.6-V V_{CC} operation.

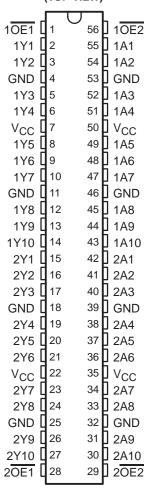
The SN74AVC16827 is composed of two 10-bit sections with separate output-enable signals. For either 10-bit buffer section, the two output-enable (1OE1 and 1OE2 or 2OE1 and 2OE2) inputs must both be low for the corresponding Y outputs to be active. If either output-enable input is high, the outputs of that 10-bit buffer section are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PIC, and Widebus are trademarks of Texas Instruments.

SCES176I - DECEMBER 1998 - REVISED JUNE 2000

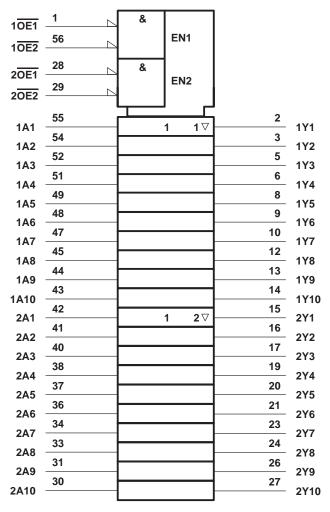

description (continued)

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The SN74AVC16827 is characterized for operation from -40°C to 85°C.

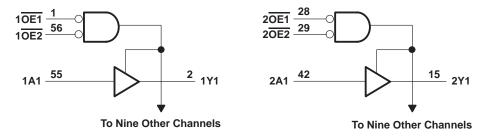
terminal assignments

DGG OR DGV PACKAGE (TOP VIEW)



FUNCTION TABLE (each 10-bit buffer/driver)

	INPUTS					
OE1	OE2	Α	Y			
L	L	L	L			
L	L	Н	Н			
Н	X	Χ	Z			
Х	Н	Χ	Z			



logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

SN74AVC16827 20-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS

SCES176I - DECEMBER 1998 - REVISED JUNE 2000

absolute maximum ratings over operating free-air temperature range (unle	ss otherwise noted)T
Supply voltage range, V _{CC}	–0.5 V to 4.6 V
Input voltage range, V _I (see Note 1)	–0.5 V to 4.6 V
Voltage range applied to any output in the high-impedance or power-off state, VO	
(see Note 1)	–0.5 V to 4.6 V
Voltage range applied to any output in the high or low state, VO	
(see Notes 1 and 2)	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, IO	±50 mA
Continuous current through each V _{CC} or GND	±100 mA

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. This value is limited to 4.6 V maximum.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT	
Vcc	Supply voltage		1.2	3.6	V	
		V _{CC} = 1.2 V	VCC			
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	0.65 × V _{CC}			
V_{IH}	High-level input voltage	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	0.65 × V _{CC}		V	
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7			
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$	2			
		V _{CC} = 1.2 V		GND		
		V _{CC} = 1.4 V to 1.6 V		0.35 × V _{CC}		
V_{IL}	Low-level input voltage	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		$0.35 \times V_{CC}$	V	
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7		
		V _{CC} = 3 V to 3.6 V		0.8		
٧ _I	Input voltage		0	3.6	V	
\/a	Output voltage	Active state	0	Vcc	V	
VO	Output voltage	3-state	0	3.6	V	
		V _{CC} = 1.4 V to 1.6 V		-2		
1	Static high level cutout current	V _{CC} = 1.65 V to 1.95 V		-4	mA	
IOHS	Static high-level output current [†]	V _{CC} = 2.3 V to 2.7 V		-8		
		V _{CC} = 3 V to 3.6 V		-12		
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$		2		
lo. o	Otafa landanda ataut ama at	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		4		
lors	Static low-level output current†	V _{CC} = 2.3 V to 2.7 V		8	mA	
		V _{CC} = 3 V to 3.6 V		12		
$\Delta t/\Delta v$	Input transition rise or fall rate	V _{CC} = 1.4 V to 3.6 V		5	ns/V	
TA	Operating free-air temperature		-40	85	°C	

[†] Dynamic drive capability is equivalent to standard outputs with I_{OH} and I_{OL} of ±24 mA at 2.5-V V_{CC}. See Figure 1 for V_{OL} vs I_{OL} and V_{OH} vs I_{OH} characteristics. Refer to the TI application reports, *AVC Logic Family Technology and Applications*, literature number **SCEA006**, and *Dynamic Output Control (DOC™) Circuitry Technology and Applications*, literature number SCEA009.

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report,

Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74AVC16827 20-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS

SCES176I - DECEMBER 1998 - REVISED JUNE 2000

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CO	ONDITIONS	Vcc	MIN	TYP [†]	MAX	UNIT	
		I _{OHS} = -100 μA,	VIH = VCC	1.4 V to 3.6 V	V _{CC} -0.2				
		$I_{OHS} = -2 \text{ mA},$	V _{IH} = 0.91 V	1.4 V	1.05	-			
Vон		$I_{OHS} = -4 \text{ mA},$	V _{IH} = 1.07 V	1.65 V	1.2			V	
		$I_{OHS} = -8 \text{ mA},$	V _{IH} = 1.7 V	2.3 V	1.75				
		$I_{OHS} = -12 \text{ mA},$	V _{IH} = 2 V	3 V	2.3				
		I _{OLS} = 100 μA		1.4 V to 3.6 V			0.2		
		$I_{OLS} = 2 \text{ mA},$	$V_{IL} = 0.49 V$	1.4 V			0.4		
VOL		IOLS = 4 mA,	V _{IL} = 0.57 V	1.65 V			0.45	V	
		IOLS = 8 mA,	V _{IL} = 0.7 V	2.3 V			0.55		
		$I_{OLS} = 12 \text{ mA},$	V _{IL} = 0.8 V	3 V		-	0.7		
II		$V_I = V_{CC}$ or GND		3.6 V			±2.5	μΑ	
l _{off}		V _I or V _O = 3.6 V		0			±10	μΑ	
loz		$V_O = V_{CC}$ or GND,	V _{IH} = V _{CC}	3.6 V			±12.5	μΑ	
Icc		$V_I = V_{CC}$ or GND,	I _O = 0	3.6 V			40	μΑ	
		V. VaaarCND		2.5 V		4			
] _C .	Control inputs	Control inputs $V_I = V_{CC}$ or GND		3.3 V		4		~F	
Ci	Data innuta	N		2.5 V		2.5		pF	
	Data inputs	$V_I = V_{CC}$ or GND		3.3 V		2.5			
	Outouto	Va Vaaar CND	VO = VCC or GND			6.5		pF	
Co	Outputs	AO = ACC of GND				6.5			

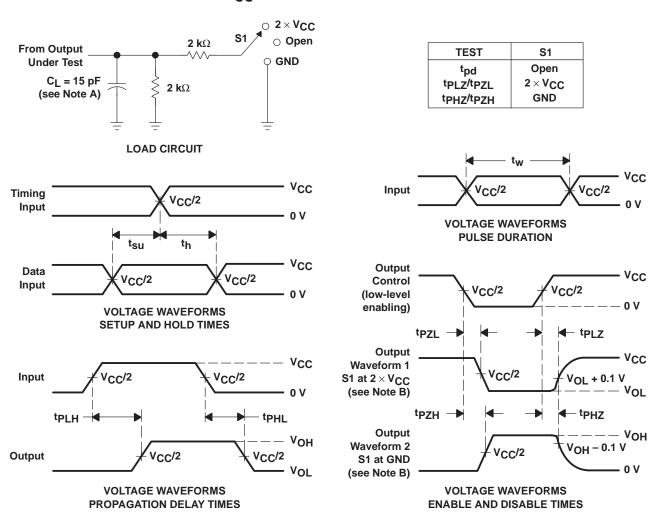
[†] Typical values are measured at $T_A = 25^{\circ}C$.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 2 through 5)

PARAMETER	_	(OUTPUT)	V _{CC} = 1.2 V	V _{CC} = 1.5 V ± 0.1 V		V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
			TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
tpd	А	Υ	3	0.4	3.2	0.9	2.9	0.8	1.9	0.5	1.7	ns
t _{en}	ŌĒ	Υ	8.7	2.3	9.1	2.1	8	1.4	5.6	1.2	5.1	ns
^t dis	ŌĒ	Y	7.5	2.7	8.3	2.5	7.3	0.9	4.9	1	4.7	ns

switching characteristics, $T_A = 0$ °C to 85°C, $C_L = 0$ pF[‡]

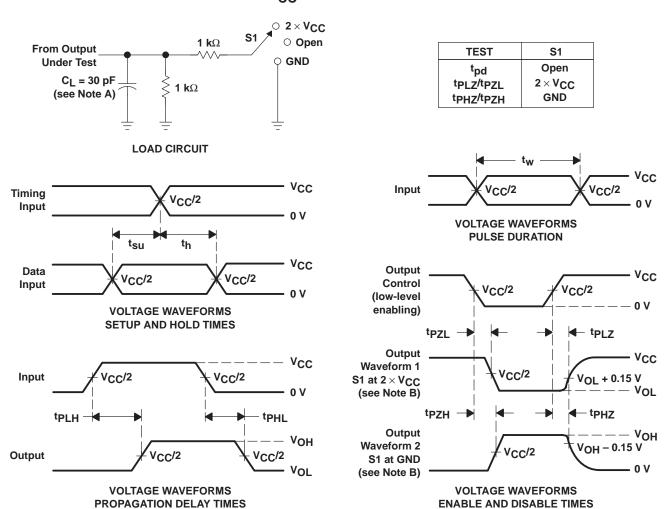
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 3.3 V ± 0.15 V		UNIT
	(1141 01)	(6611 61)	MIN	MAX	
t _{pd}	А	Υ	0.09	0.67	ns


[‡] Texas Instruments SPICE simulation data

operating characteristics, T_A = 25°C

PARAMETER			TEST CONDITIONS		V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	UNIT
TANAMETER		TYP			TYP	TYP	J	
C .	Power dissipation	Outputs enabled	C, _ 0	_ 10 MHz	31	35	40	pF
C _{pd} cap	capacitance	Outputs disabled	$C_L = 0,$ f	0, f = 10 MHz	6	6	6	pF

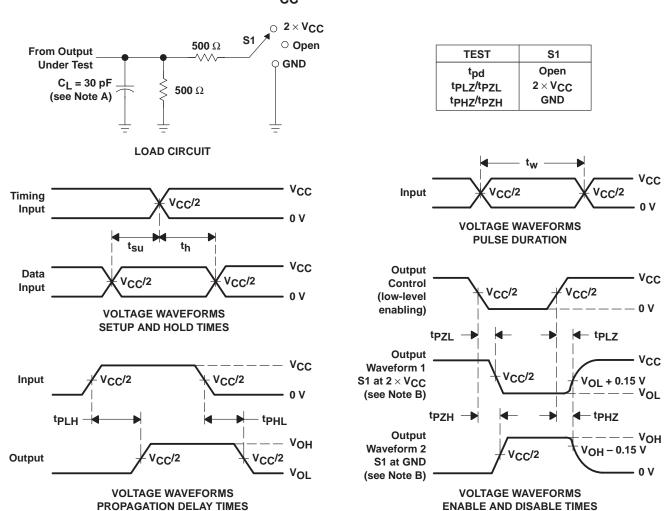
PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.2 \text{ V}$ AND 1.5 V \pm 0.1 V


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z $_{\mbox{\scriptsize O}}$ = 50 $\Omega,$ $t_{\mbox{\scriptsize f}}$ \leq 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpZL and tpZH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

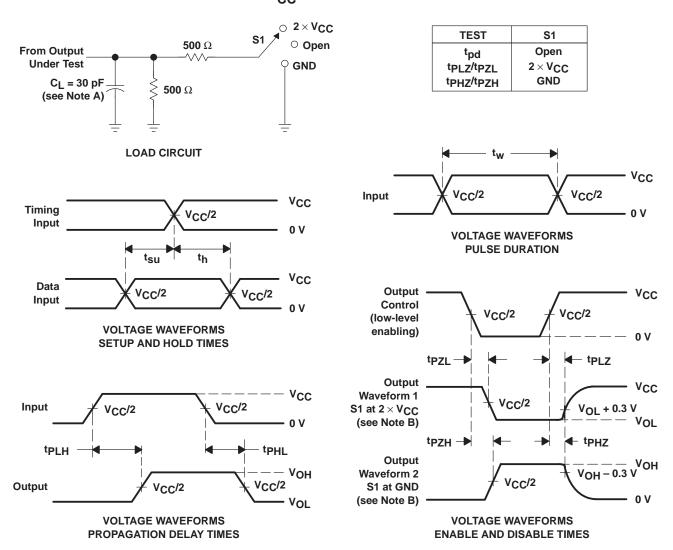
PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}$



- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 3. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.5 V \pm 0.2 V


NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLZ and tpHZ are the same as tdis.
- F. tpZL and tpZH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 4. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \ \Omega$, $t_f \leq 2 \ ns$, $t_f \leq 2 \ ns$.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLZ and tpHZ are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 5. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated