捷多邦,专业PCB打样工厂,24小时加到24GTLPH3245 查询SN74GTLPH3245供应商 32-BIT LVTTL-TO-GTL+ ADJUSTABLE-EDGE-RATE BUS TRANSCEIVER

SCES291 - OCTOBER 1999

- **Bidirectional Interface Between GTL+** Signal Levels and LVTTL Logic Levels
- Equivalent to '32245 Function
- LVTTL Interfaces Are 5-V Tolerant
- High-Drive GTL+ Outputs (100 mA)
- LVTTL Outputs (-24 mA/24 mA)
- Variable Edge-Rate Control (ERC) Input Selects GTL+ Rise and Fall Times for Optimal Data-Transfer Rate and Signal WWW.DZSC Integrity
- Ioff, Power-Up 3-State, and BIAS V_{CC} Support Live Insertion
- **Bus Hold on A-Port Data Inputs**
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- Packaged in Plastic Fine-Pitch Ball Grid Array Package

description

The SN74GTLPH3245 is a high-drive 32-bit bus transceiver that provides LVTTL-to-GTL+ and GTL+-to-LVTTL signal-level translation. It is partitioned as four 8-bit transceivers and is equivalent to the '32245 function. The device provides a high-speed interface between cards operating at LVTTL logic levels and a backplane operating at GTL+ signal levels. High-speed (about two times faster than standard LVTTL or TTL) backplane operation is a direct result of GTLP's reduced output swing (<1 V), reduced input threshold levels, improved differential input, and output edge control (OEC[™]). Improved GTLP OEC circuits minimize bus settling time and have been designed and tested using several backplane models. The high drive is suitable for driving double-terminated low-impedance backplanes using incident-wave switching.

GTL+ is the Texas Instruments derivative of the Gunning transceiver logic (GTL) JEDEC standard JESD 8-3. The AC specification of the SN74GTLPH3245 is given only at the preferred higher noise margin GTL+, but the user has the flexibility of using this device at either GTL (V_{TT} = 1.2 V and V_{RFF} = 0.8 V) or GTL+ (V_{TT} = 1.5 V and $V_{RFF} = 1 V$) signal levels.

Normally, the B port operates at GTL or GTL+ levels, while the A port and control inputs are compatible with LVTTL logic levels and are 5-V tolerant. V_{RFF} is the reference input voltage for the B port.

This device is fully specified for live-insertion applications using loff, power-up 3-state, and BIAS V_{CC}. The loff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The BIAS V_{CC} circuitry precharges and preconditions the B-port input/output connections, preventing disturbance of active data on the backplane during card insertion or removal, and permits true live-insertion capability.

High-drive GTLP backplane interface devices feature adjustable edge-rate control (ERC). Changing the ERC input voltage between GND and V_{CC} adjusts the B-port output rise and fall times. This allows the designer to optimize system data-transfer rate and signal integrity to the backplane load.

Active bus-hold circuitry is provided to hold unused or undriven LVTTL inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, the output-enable (\overline{OE}) input should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74GTLPH3245 is characterized for operation from –40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Cisa trademark of Texas Instruments Incorporated.

SCES291 - OCTOBER 1999

functional description

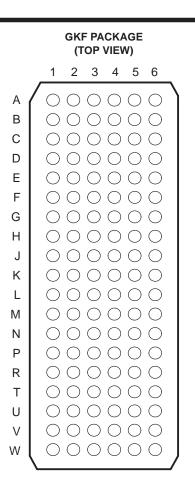
The SN74GTLPH3245 is a high-drive (100 mA) 32-bit bus transceiver partitioned in four 8-bit segments, providing standard '245 functionality, and is designed for asynchronous communication between data buses. The device transmits data from the A port to the B port or from the B port to the A port, depending on the logic level at the direction-control (DIR) input. \overline{OE} can be used to disable the device so the buses are effectively isolated. Data polarity is noninverting.

For A-to-B data flow, when \overline{OE} is low and DIR is high, the B outputs take on the logic value of the A inputs. When \overline{OE} is high, the outputs are in the high-impedance state.

Data flow for B to A is similar to that for A to B, but \overline{OE} is low and DIR is low.

Function Tables

FUNCTION TABLE (each 8-bit section)

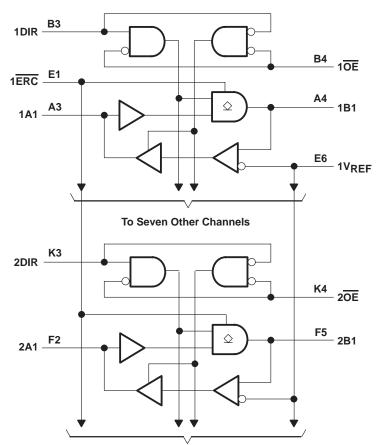

INP	UTS	OUTPUT	MODE
OE	DIR	OUTFUT	WIODE
L	L	B data to A port	Transparent
L	Н	A data to B port	Transparent
н	Х	Z	Isolation

B-PORT EDGE-RATE CONTROL (ERC)

INPU	JT ERC	OUTPUT
LOGIC LEVEL	NOMINAL VOLTAGE	B-PORT EDGE RATE
L	GND	Slow
н	Vcc	Fast

SCES291 - OCTOBER 1999

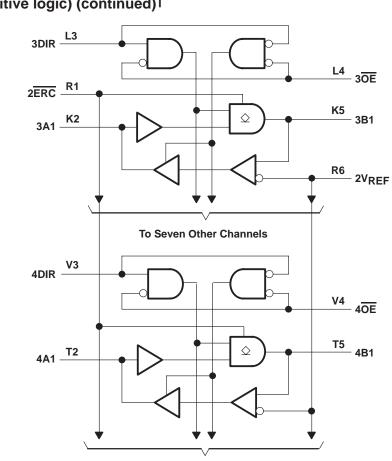
terminal assignments


A 1A3 1A2 1A1 1B1 1B2 1B3 B GND 1A4 1DIR 1OE 1B4 GND C 1A6 1A5 GND GND 1B5 1B6 D 1A8 1A7 1V _{CC} 1V _{CC} 1B7 1B8 E 1ERC GND GND GND 1B1AS V _{CC} 1V _{REF} F 2A2 2A1 GND GND 2B1 2B2 G 2A4 2A3 1V _{CC} 1V _{CC} 2B3 2B4 H GND 2A5 GND GND 2B5 GND J 2A6 2A7 2A8 2B8 2B7 2B6 K NC 3A1 2DIR 2OE 3B1 NC L 3A3 3A2 3DIR 3OE 3B2 3B3 M GND 3A4 GND GND 3B4 GND N 3A6							
B GND 1A4 1DIR 1OE 1B4 GND C 1A6 1A5 GND GND GND 1B5 1B6 D 1A8 1A7 1V _{CC} 1V _{CC} 1B7 1B8 E 1ERC GND GND GND 1BIAS V _{CC} 1V _{REF} F 2A2 2A1 GND GND 2B1 2B2 G 2A4 2A3 1V _{CC} 1V _{CC} 2B3 2B4 H GND 2A5 GND GND 2B5 GND J 2A6 2A7 2A8 2B8 2B7 2B6 K NC 3A1 2DIR 2OE 3B1 NC L 3A3 3A2 3DIR 3OE 3B2 3B3 M GND 3A4 GND GND 3B4 GND N 3A6 3A7 GND GND 2BIAS V _{CC} 2V _{REF}		1	2	3	4	5	6
C 1A6 1A5 GND GND 1B5 1B6 D 1A8 1A7 1V _{CC} 1V _{CC} 1B7 1B8 E 1ERC GND GND GND GND 1BIAS V _{CC} 1V _{REF} F 2A2 2A1 GND GND 2B1 2B2 G 2A4 2A3 1V _{CC} 1V _{CC} 2B3 2B4 H GND 2A5 GND GND 2B5 GND J 2A6 2A7 2A8 2B8 2B7 2B6 K NC 3A1 2DIR 2OE 3B1 NC J 2A6 2A7 2A8 2B8 2B7 2B6 K NC 3A1 2DIR 2OE 3B1 NC L 3A3 3A2 3DIR 3OE 3B2 3B3 M GND 3A4 GND GND 3B4 GND N	Α	1A3	1A2	1A1	1B1	1B2	1B3
D 1A8 1A7 1V _{CC} 1V _{CC} 1B7 1B8 E 1ERC GND GND GND GND 1BIAS V _{CC} 1V _{REF} F 2A2 2A1 GND GND GND 2B1 2B2 G 2A4 2A3 1V _{CC} 1V _{CC} 2B3 2B4 H GND 2A5 GND GND 2B5 GND J 2A6 2A7 2A8 2B8 2B7 2B6 K NC 3A1 2DIR 2OE 3B1 NC L 3A3 3A2 3DIR 3OE 3B2 3B3 M GND 3A4 GND GND 3B4 GND N 3A6 3A5 2V _{CC} 2V _{CC} 3B5 3B6 P 3A8 3A7 GND GND 3B7 3B8 R 2ERC GND GND GND 2BIAS V _{CC} 2V _{REF}	В	GND	1A4	1DIR	1OE	1B4	GND
E 1ERC GND GND GND GND 1BIAS V _{CC} 1V _{REF} F 2A2 2A1 GND GND 2B1 2B2 G 2A4 2A3 1V _{CC} 1V _{CC} 2B3 2B4 H GND 2A5 GND GND 2B5 GND J 2A6 2A7 2A8 2B8 2B7 2B6 K NC 3A1 2DIR 2OE 3B1 NC L 3A3 3A2 3DIR 3OE 3B2 3B3 M GND 3A4 GND GND 3B4 GND N 3A6 3A5 2V _{CC} 2V _{CC} 3B5 3B6 P 3A8 3A7 GND GND 2BIAS V _{CC} 2V _{REF} T 4A2 4A1 2V _{CC} 2V _{CC} 4B1 4B2 U 4A4 4A3 GND GND 4B3 4B4	С	1A6	1A5	GND	GND	1B5	1B6
F 2A2 2A1 GND GND 2B1 2B2 G 2A4 2A3 1V _{CC} 1V _{CC} 2B3 2B4 H GND 2A5 GND GND QB5 GND J 2A6 2A7 2A8 2B8 2B7 2B6 K NC 3A1 2DIR 2OE 3B1 NC L 3A3 3A2 3DIR 3OE 3B2 3B3 M GND 3A4 GND GND 3B4 GND N 3A6 3A5 2V _{CC} 2V _{CC} 3B5 3B6 P 3A8 3A7 GND GND 3B7 3B8 R 2ERC GND GND GND 2BIAS V _{CC} 2V _{REF} T 4A2 4A1 2V _{CC} 2V _{CC} 4B1 4B2 U 4A4 4A3 GND GND 4B3 4B4 V GND </th <th>D</th> <th>1A8</th> <th>1A7</th> <th>1VCC</th> <th>1V_{CC}</th> <th>1B7</th> <th>1B8</th>	D	1A8	1A7	1VCC	1V _{CC}	1B7	1B8
G 2A4 2A3 1V _{CC} 1V _{CC} 2B3 2B4 H GND 2A5 GND GND GND 2B5 GND J 2A6 2A7 2A8 2B8 2B7 2B6 K NC 3A1 2DIR 2OE 3B1 NC L 3A3 3A2 3DIR 3OE 3B2 3B3 M GND 3A4 GND GND 3B4 GND N 3A6 3A5 2V _{CC} 2V _{CC} 3B5 3B6 P 3A8 3A7 GND GND 3B7 3B8 R 2ERC GND GND GND 2BIAS V _{CC} 2V _{REF} T 4A2 4A1 2V _{CC} 2V _{CC} 4B1 4B2 U 4A4 4A3 GND GND 4B3 4B4	E	1ERC	GND	GND	GND	1BIAS V _{CC}	1V _{REF}
H GND 2A5 GND GND 2B5 GND J 2A6 2A7 2A8 2B8 2B7 2B6 K NC 3A1 2DIR 2OE 3B1 NC L 3A3 3A2 3DIR 3OE 3B2 3B3 M GND 3A4 GND GND 3B4 GND N 3A6 3A5 2V _{CC} 2V _{CC} 3B5 3B6 P 3A8 3A7 GND GND 3B7 3B8 R 2ERC GND GND GND 2BIAS V _{CC} 2V _{REF} T 4A2 4A1 2V _{CC} 2V _{CC} 4B1 4B2 U 4A4 4A3 GND GND 4B3 4B4 V GND 4A5 4DIR 4OE 4B5 GND	F	2A2	2A1	GND	GND	2B1	2B2
J 2A6 2A7 2A8 2B8 2B7 2B6 K NC 3A1 2DIR 2OE 3B1 NC L 3A3 3A2 3DIR 3OE 3B2 3B3 M GND 3A4 GND GND 3B4 GND N 3A6 3A5 2V _{CC} 2V _{CC} 3B5 3B6 P 3A8 3A7 GND GND 3B7 3B8 R 2ERC GND GND GND 2U 2V _{CC} 2V _{CC} 2V _{REF} T 4A2 4A1 2V _{CC} 2V _{CC} 4B1 4B2 U 4A4 4A3 GND GND 4B3 4B4 V GND 4A5 4DIR 4OE 4B5 GND	G	2A4	2A3	1VCC	1VCC	2B3	2B4
K NC 3A1 2DIR 2OE 3B1 NC L 3A3 3A2 3DIR 3OE 3B2 3B3 M GND 3A4 GND GND 3B4 GND N 3A6 3A5 2V _{CC} 2V _{CC} 3B5 3B6 P 3A8 3A7 GND GND 3B7 3B8 R 2ERC GND GND GND 2BIAS V _{CC} 2V _{REF} T 4A2 4A1 2V _{CC} 2V _{CC} 4B1 4B2 U 4A4 4A3 GND GND 4B3 4B4 V GND 4A5 4DIR 4OE 4B5 GND	Н	GND	2A5	GND	GND	2B5	GND
L 3A3 3A2 3DIR 3OE 3B2 3B3 M GND 3A4 GND GND 3B4 GND N 3A6 3A5 2V _{CC} 2V _{CC} 3B5 3B6 P 3A8 3A7 GND GND 3B7 3B8 R 2ERC GND GND GND 2BIAS V _{CC} 2V _{REF} T 4A2 4A1 2V _{CC} 2V _{CC} 4B1 4B2 U 4A4 4A3 GND GND 4B5 GND V GND 4A5 4DIR 4OE 4B5 GND	J	2A6	2A7	2A8	2B8	2B7	2B6
M GND 3A4 GND GND 3B4 GND N 3A6 3A5 2V _{CC} 2V _{CC} 3B5 3B6 P 3A8 3A7 GND GND 3B7 3B8 R 2ERC GND GND GND 2BIAS V _{CC} 2V _{REF} T 4A2 4A1 2V _{CC} 2V _{CC} 4B1 4B2 U 4A4 4A3 GND GND 4B3 4B4 V GND 4A5 4DIR 4OE 4B5 GND	К	NC	3A1	2DIR	2OE	3B1	NC
N 3A6 3A5 2V _{CC} 2V _{CC} 3B5 3B6 P 3A8 3A7 GND GND 3B7 3B8 R 2ERC GND GND GND 2BIAS V _{CC} 2V _{REF} T 4A2 4A1 2V _{CC} 2V _{CC} 4B1 4B2 U 4A4 4A3 GND GND 4B3 4B4 V GND 4A5 4DIR 4OE 4B5 GND	L	3A3	3A2	3DIR	3OE	3B2	3B3
P 3A8 3A7 GND GND 3B7 3B8 R 2ERC GND GND GND 2BIAS V _{CC} 2V _{REF} T 4A2 4A1 2V _{CC} 2V _{CC} 4B1 4B2 U 4A4 4A3 GND GND 4B3 4B4 V GND 4A5 4DIR 4OE 4B5 GND	М	GND	3A4	GND	GND	3B4	GND
R 2ERC GND GND GND 2BIAS V _{CC} 2V _{REF} T 4A2 4A1 2V _{CC} 2V _{CC} 4B1 4B2 U 4A4 4A3 GND GND 4B3 4B4 V GND 4A5 4DIR 4OE 4B5 GND	N	3A6	3A5	2VCC	2VCC	3B5	3B6
T 4A2 4A1 2V _{CC} 2V _{CC} 4B1 4B2 U 4A4 4A3 GND GND 4B3 4B4 V GND 4A5 4DIR 4OE 4B5 GND	Р	3A8	3A7	GND	GND	3B7	3B8
U 4A4 4A3 GND GND 4B3 4B4 V GND 4A5 4DIR 4OE 4B5 GND	R	2ERC	GND	GND	GND	2BIAS V_{CC}	2V _{REF}
V GND 4A5 4DIR 4OE 4B5 GND	Т	4A2	4A1	2V _{CC}	2V _{CC}	4B1	4B2
	U	4A4	4A3	GND	GND	4B3	4B4
	V	GND	4A5	4DIR	4OE	4B5	GND
W 4A6 4A7 4A8 4B8 4B7 4B6	W	4A6	4A7	4A8	4B8	4B7	4B6

NC – No internal connection

SCES291 - OCTOBER 1999

logic diagram (positive logic)[†]



To Seven Other Channels

 $^{\dagger}\,\text{IV}_{CC}$ and 1BIAS V_{CC} are associated with these channels.

SCES291 - OCTOBER 1999

To Seven Other Channels

 $^{\dagger}\,\text{2V}_{CC}$ and 2BIAS V_{CC} are associated with these channels.

logic diagram (positive logic) (continued)[†]

SCES291 - OCTOBER 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} and BIAS V _{CC} Input voltage range, V _I (see Note 1): A-port and control inputs B port, ERC, and V _{RFF}	\ldots –0.5 V to 7 V
Voltage range applied to any output in the high-impedance or power-off state, V_{O}	
(see Note 1): A port	\ldots –0.5 V to 7 V
B port	–0.5 V to 4.6 V
Voltage range applied to any output in the high or low state, $V_{f O}$	
(see Note 1): A port	–0.5 V to V _{CC} + 0.5 V
B port	$\dots \dots -0.5$ V to 4.6 V
Current into any output in the low state, I _O : A port	48 mA
B port	
Current into any A-port output in the high state, I _O (see Note 2)	
Continuous current through each V _{CC} or GND	
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I _{OK} (V _O < 0)	
Package thermal impedance, θ_{JA} (see Note 3)	
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 - 2. This current flows only when the output is in the high state and $V_O > V_{CC}$.
 - 3. The package thermal impedance is calculated in accordance with JESD 51.

SCES291 - OCTOBER 1999

			MIN	NOM	MAX	UNIT	
V _{CC} , BIAS V _{CC}	Supply voltage		3.15	3.3	3.45	V	
\/	Termination voltage	GTL	1.14	1.2	1.26	v	
VTT	Termination voltage	GTL+	1.35	1.5	1.65	v	
V	Supply veltage	GTL	0.74	0.8	0.87	v	
VREF	Supply voltage	GTL+	0.87	5 3.3 3.4 4 1.2 1.2 5 1.5 1.6 4 0.8 0.8 7 1 1. VT VCO 0.05 -0.6 VCC 2 VREF- GND 0. 0. -1 -2 2 10	1.1		
		B port			VTT		
VI	Input voltage	Except B port			VCC	V	
V _{IH} High-leve		B port	V _{REF} +0.05				
	High-level input voltage	ERC	V _{CC} -0.6	Vcc		V	
		Except B port and ERC	2				
		B port			V _{REF} -0.05		
VIL	Low-level input voltage	ERC		GND	0.6	V	
		Except B port and ERC			0.8	1	
IK	Input clamp current				-18	mA	
ЮН	High-level output current	A port			-24	mA	
		A port			24		
OL	Low-level output current	B port	1		100	mA	
T _A	Operating free-air temperature	•	-40		85	°C	

recommended operating conditions (see Notes 4 through 6)

NOTES: 4. All unused control and B-port inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

5. Normal connection sequence is GND first, BIAS V_{CC} = 3.3 V second, and V_{CC} = 3.3 V, I/O, control inputs, V_{TT} and V_{REF} (any order) last. However, if the B-port I/O precharge is not required, the acceptable connection sequence is GND first and V_{CC} = 3.3 V, BIAS V_{CC} = 3.3 V, I/O, control inputs, V_{TT} and V_{REF} (any order) last. When V_{CC} is connected, the BIAS V_{CC} circuitry is disabled.

 V_{TT} and R_{TT} can be adjusted to accommodate backplane impedances as long as they do not exceed the DC absolute I_{OL} ratings. Similarly, V_{REF} can be adjusted to optimize noise margins, but normally is 2/3 V_{TT}.

SCES291 - OCTOBER 1999

electrical characteristics over recommended operating free-air temperature range for GTL+ (unless otherwise noted)

PA	ARAMETER	TEST CONDITIONS		MIN	TYP [†]	MAX	UNIT
VIK		V _{CC} = 3.15 V,	lı = -18 mA			-1.2	V
		V _{CC} = 3.15 V to 3.45 V,	I _{OH} = -100 μA	V _{CC} -0.2			
VOH	A port	V	I _{OH} = -12 mA	2.4			V
		VCC = 5.15 V	I _{OH} = -24 mA	18 mA - = $-100 \mu A$ V _{CC} -0.2 = $-12 mA$ 2.4 = $-24 mA$ 2 = $100 \mu A$ 2 = $12 mA$ 2 = $12 mA$ 2 = $10 mA$ - = $10 mA$ - = $10 mA$ - = $100 mA$ - 0 to $1.5 V$ - 0 to $1.5 V$ - 0 to V_{CC} - 5.5 V - 0 to V_{CC} - uts high uts low uts disabled -			
		$V_{CC} = 3.15 \text{ V to } 3.45 \text{ V},$	I _{OL} = 100 μA	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.2		
	A port		I _{OL} = 12 mA	A 0.2 A 0.4 A 0.5 A 0.2 A 0.2 A 0.2 A 0.4 A 0.55 V ±10 C ±10 75 -75 C 500			
Va	A port $V_{CC} = 3.15 V \text{ to } 3.45 V$, $V_{CC} = 3.15 V$ A port $V_{CC} = 3.15 V \text{ to } 3.45 V$, $V_{CC} = 3.15 V \text{ to } 3.45 V$,A port $V_{CC} = 3.15 V$ B port $V_{CC} = 3.15 V$ B port $V_{CC} = 3.15 V$ B port $V_{CC} = 3.45 V$, A -port and control inputsA port $V_{CC} = 3.45 V$, $V_{CC} = 3.15 V$, A portA port $V_{CC} = 3.45 V$, $V_{CC} = 3.45 V$, A portA port $V_{CC} = 3.45 V$, $V_{CC} = 3.45 V$, $A portA portV_{CC} = 3.45 V,V_{I} (A-port or control input) = V_{CC} or GNDV_{I} (B port) = V_{TT} or GNDV_{CC} = 3.45 V, One A-port or control inputOther A-port or control inputs at V_{CC} or GControl inputsV_{I} = 3.15 V or 0$	I _{OL} = 24 mA			0.5	v	
VOL			I _{OL} = 10 mA			0.2	v
	B port	$V_{CC} = 3.15 V$ to $3.45 V$, $V_{CC} = 3.15 V$ $V_{CC} = 3.15 V$ to $3.45 V$, $V_{CC} = 3.15 V$ $V_{CC} = 3.45 V$, One A-port or control input; $V_{CC} = 3.45 V$, One A-port or control input; $V_{CC} = 3.45 V$, One A-port or control input;	I _{OL} = 64 mA			0.4	
			I _{OL} = 100 mA			0.55	
	B port	V _{CC} = 3.45 V,	$V_{I} = 0$ to 1.5 V			±10	
ıı‡	A-port and		AI = 0 or ACC			±10	μΑ
	control inputs	VCC = 3.45 V	V _I = 5.5 V			±20	
IBHL§	A port	V _{CC} = 3.15 V,	V _I = 0.8 V	75			μA
I _{BHH} ¶	A port	V _{CC} = 3.15 V,	V _I = 2 V	-75			μA
IBHLO [#]	A port	V _{CC} = 3.45 V,	$V_I = 0$ to V_{CC}			500	μA
^I внно	A port	V _{CC} = 3.45 V,	$V_I = 0$ to V_{CC}			-500	μA
		$V_{CC} = 3.45 V. _{O} = 0.$	Outputs high			40	
ICC	A port $V_{CC} = 3.15 V$ A port $V_{CC} = 3.15 V \text{ to } 3.45 V$,A port $V_{CC} = 3.15 V$ B port $V_{CC} = 3.15 V$ B port $V_{CC} = 3.15 V$ B port $V_{CC} = 3.45 V$,A-port and control inputs $V_{CC} = 3.45 V$,A port $V_{CC} = 3.45 V$,A port $V_{CC} = 3.15 V$,A port $V_{CC} = 3.45 V$,A or B port $V_{CC} = 3.45 V$, $I_{O} = 0$, $V_{I} (A-port or control input) = V_{CC} or GNDV_{I} (B port) = V_{TT} or GNDV_{CC} = 3.45 V, One A-port or control inputOther A-port or control inputs at V_{CC} or GControl inputsV_{I} = 3.15 V or 0A portV_{O} = 3.15 V or 0$	Outputs low			40	mA	
		V_{I} (B port) = V_{TT} or GND	$V_{I} = 0 \text{ to } V_{CC}$ $V_{I} = 0 \text{ to } V_{CC}$ $V_{I} = 0 \text{ to } V_{CC}$ Outputs high Outputs low Outputs low Outputs disabled	40			
ΔICC☆		V_{CC} = 3.45 V, One A-port or control input at Other A-port or control inputs at V_{CC} or GNI				1.5	mA
Ci	Control inputs	V _I = 3.15 V or 0					pF
0	A port	V _O = 3.15 V or 0					- 5
Cio	B port	$V_{0} = 1.5 \text{ V or } 0$					pF

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

[‡] For I/O ports, the parameter I_I includes the off-state output leakage current.

§ The bus-hold circuit can sink at least the minimum low sustaining current at VILmax. IBHL should be measured after lowering VIN to GND and then raising it to VILmax.

The bus-hold circuit can source at least the minimum high sustaining current at VIHmin. IBHH should be measured after raising VIN to VCC and then lowering it to VIHmin.

An external driver must source at least IBHLO to switch this node from low to high.

An external driver must sink at least IBHHO to switch this node from high to low.

*This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

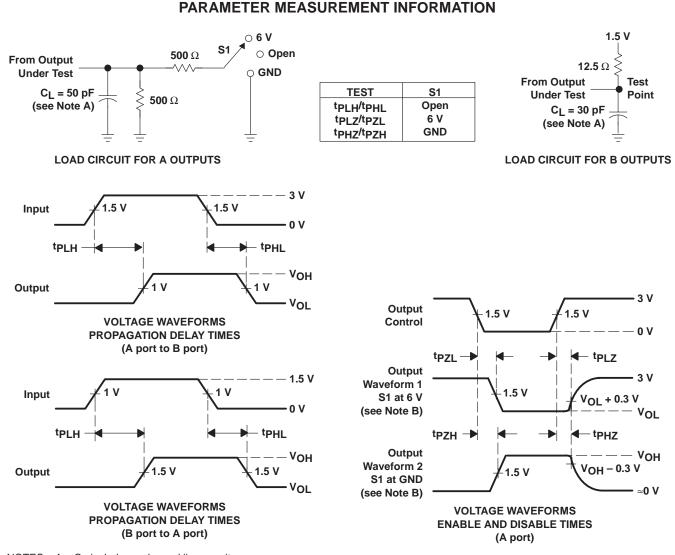
live-insertion specifications for A port over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS			MIN	MAX	UNIT
loff	$V_{CC} = 0,$	BIAS $V_{CC} = 0$,	V_{I} or V_{O} = 0 to 5.5 V		100	μΑ
IOZPU	$V_{CC} = 0$ to 1.5 V,	V_{O} = 0.5 V to 3 V,	OE = 0		±100	μΑ
IOZPD	V _{CC} = 1.5 V to 0,	V_{O} = 0.5 V to 3 V,	OE = 0		±100	μA

SCES291 - OCTOBER 1999

live-insertion specifications for B port over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS		MIN	MAX	UNIT
loff	$V_{CC} = 0,$	BIAS $V_{CC} = 0$,	V_{I} or V_{O} = 0 to 1.5 V		100	μA
IOZPU	$V_{CC} = 0$ to 1.5 V,	$V_{O} = 0.5 V$ to 1.5 V,	$\overline{OE} = 0$		±100	μΑ
IOZPD	V _{CC} = 1.5 V to 0,	$V_{O} = 0.5 V$ to 1.5 V,	$\overline{OE} = 0$		±100	μΑ
	V _{CC} = 0 to 3.15 V	15 V			5	mA
ICC (BIAS VCC)	V _{CC} = 3.15 V to 3.45 V	BIAS $V_{CC} = 3.15$ V to 3.45 V,	V_O (B port) = 0 to 1.5 V		10	μA
VO	V _{CC} = 0,	BIAS V _{CC} = 3.3 V		0.95	1.05	V
IO	$V_{CC} = 0,$	BIAS V _{CC} = 3.15 V to 3.45 V,	V _O (B port) = 0.6 V	-1		μΑ


switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTL+ (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	MIN TYP‡	MAX	UNIT	
.		В	Slow				
^t pd	A	Б	Fast			ns	
t _{en}	OE	В	Slow				
^t dis	UE	В	SIOW			ns	
t _{en}	OE	В	Fast			ns	
^t dis	UE	В	1 851			115	
+		B outputs	Slow				
tr	(0.6 V te	o 1.3 V)	Fast			ns	
**	Fall time,	B outputs	Slow				
tf	(1.3 V to	o 0.6 V)	Fast			ns	
^t pd	В	А				ns	
ten	OE	А					
^t dis		A				ns	

[†] Slow (ERC = GND) and Fast (ERC = V_{CC}) [‡] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

SCES291 - OCTOBER 1999

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \leq 1 V/ns.

D. The outputs are measured one at a time with one transition per measurement.

SCES291 - OCTOBER 1999

DISTRIBUTED-LOAD BACKPLANE SWITCHING CHARACTERISTICS

This data sheet is specified for and tested to the lump load shown in Figure 1. However, the designer probably uses this GTLP device in a distributed load like that shown in Figure 2, in which actual B-port backplane switching characteristics are different. Therefore, the device is modeled as shown in Figure 3, which very closely matches the results obtained using Figure 2. Switching characteristics based on Figure 3 more closely match actual backplane design requirements.

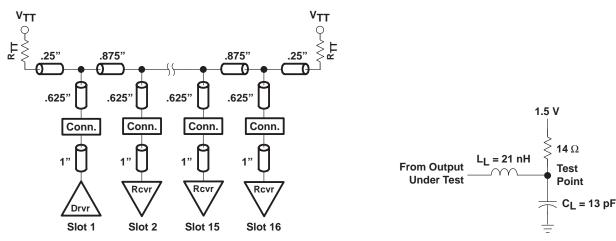


Figure 2. Test Backplane Model

Figure 3. Distributed-Load Circuit for B Outputs

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTL+ (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	MIN T	ҮР‡	MAX	UNIT
+ .	АВ		Slow				ns
^t pd	A	В	Fast				115
ten	OE	В	Slow				ns
^t dis	UL	, , , , , , , , , , , , , , , , , , ,	6100				115
t _{en}	OE	В	Fast				ns
^t dis	UE	В	1 850				115
+		B outputs	Slow				ns
t _r	(0.6 V te	o 1.3 V)	Fast				115
	Fall time,	B outputs	Slow				20
t _f	(1.3 V te	o 0.6 V)	Fast				ns

[†]Slow ($\overline{\text{ERC}} = \text{GND}$) and Fast ($\overline{\text{ERC}} = \text{V}_{\text{CC}}$)

[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25° C.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated