

CMOS Quad 3-State R/S Latches

High-Voltage Types (20-Volt Rating) Quad NOR R/S Latch - CD4043B Quad NAND R/S Latch - CD4044B

■CD4043B types are quad crosscoupled 3-state CMOS NOR latches and the CD4044B types are quad cross-coupled 3state CMOS NAND latches. Each latch has a separate Q output and individual SET and RESET inputs. The Q outputs are controlled by a common ENABLE input. A logic "1" or high on the ENABLE input connects the latch states to the Q outputs. A logic "0" or low on the ENABLE input disconnects the latch states from the Q outputs, resulting in an open circuit condition on the Q outputs. The open circuit feature allows common busing of the outputs.

The CD4043B and CD4044B types are supplied in 16-lead hermetic dual-in-line ceramic packages (D and F suffixes), 16-lead dual-in-line plastic packages (E suffix), and in chip form (H suffix).

CD4043B CD4044B

MAXIMUM RATINGS, Absolute-Maximum Values:

df.dzsc.com

Fig. 1 - Logic diagrams.

DC SUPPLY-VOLTAGE RANGE, (VDD) Voltages referenced to VSS Terminal) INPUT VOLTAGE RANGE, ALL INPUTS DC INPUT CURRENT, ANY ONE INPUT POWER DISSIPATION PER PACKAGE (PD): For TA = -55°C to +100°C For T_A = +100°C to +125°C...... Derate Linearity at 12mW/°C to 200mW DEVICE DISSIPATION PER OUTPUT TRANSISTOR QPERATING-TEMPERATURE RANGE (TA).....-55°C to +125°C STORAGE TEMPERATURE RANGE (Tatg).....-65°C to +150°C LEAD TEMPERATURE (DURING SOLDERING):

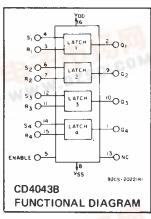
CD4043B, **CD4044B** Types

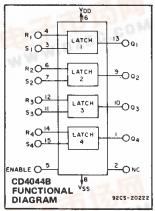
Features:

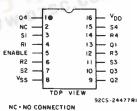
- 3-state outputs with common output **ENABLE**
- Separate SET and RESET inputs for each latch
- **NOR and NAND configurations**
- 5-V, 10-V, and 15-V parametric ratings
- Standardized symmetrical output characteristics
- 100% tested for quiescent current at 20 V
- Maximum input current of 1 µA at 18 V over full package temperature range; 100 nA at 18 V and 25°C
- Noise margin (over full package temperature range): 1 V at $V_{DD} = 5 V$

2 V at V_{DD} = 10 V $2.5 \text{ V at V}_{DD} = 15 \text{ V}$

■ Meets all requirements of JEDEC Tentative Standard No. 138, "Standard Specifications for Description of 'B' Series CMOS Devices"


Applications:


- Holding register in multi-register system
- Four bits of independent storage with output ENABLE
- Strobed register
- General digital logic
- CD4043B for positive logic systems
- CD4044B for negative logic systems


82

Vss.

NC - NO CONNECTION

ENTS

Ţ	ERN	IINAL	ASSI	GNM	

	s	R	E	Q
	×	X 0 0	0	oc.
	0	0	1	NC+
	1	0	1	1
	0	1	1	0
	1	1	1	Δ
10	CHI	т		

CD4043R

54 53

03

OPEN CIRCUI △ DOMINATED BY S=1 INPUT

CD4043B

CD4044B SREQ OC' 0 00 ò

*OPEN CIRCUIT + NO CHANGE △ △ DOMINATED BY R=O INPUT

CD4044B

TRUTH TABLES

Recommended Operating Conditions TA=25°C For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ran

CIOH 13 GIVENA A ALCHILL CHE	101101	villig i	ange:	
Characteristic **	V _{DD}	Min.	Max.	Units
Supply-Voltage Range (T _A = Full Package Temperature Range)		3	18	v
SET or RESET Pulse Width, t _W	5 10 15	160 80 40	- -	ns

CD4043B, CD4044B Types

STATIC ELECTRICAL CHARACTERISTICS

CHARACTER- ISTIC	CONDITIONS		LIMITS AT INDICATED TEMPERATURES (°C)					C)	UNITS					
	V _O (V)	V _{IN}	V _{DD} (V)	-55	-40	+85	+125	Min.	Тур.	Max.				
Quiescent Device	_	0,5	5	1	1	30	30	_	0.02	1				
Current,	_	0,10	10	2	2	60	60	-	0.02	2	μА			
IDD Max.	-	0,15	15	4	4	120	120	-	0.02	4	μ.			
	_	0,20	20	20	20	600	600	_	0.04	20				
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1					
(Sink) Current	0.5	0,10	10	1.6	1.5	1,1	0.9	1.3	2.6	-				
IOL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8	_				
Output High	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	_	mA			
(Source)	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2	-				
Current,	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6	_				
IOH Min.	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	_				
Output Voltage:	_	0,5	5		0	.05		_	0	0.05				
Low-Level,		0,10	10		0	.05		-	0	0.05	1			
VOL Max.		0,15	15	0.05 - 0 0.0				0.05	v					
Output Voltage:		0,5	5	4.95 4.95 5 -						-				
High-Level,	_	0,10	10		9	.95		9.95	10]			
VOH Min.	_	0,15	15	14.95 14.95 1				15	_					
Input Low	0.5, 4.5	-	5		,	1.5		_	_	1.5	V			
Voltage,	1, 9	-	10			3			_	3				
V _{IL} Max.	1.5,13.5	_	15			4		_		4				
Input High	0.5, 4.5	_	5	3.5 3.5 —] *					
Voltage, VIH Min.	1, 9		10	7 7				7	_	<u></u>				
	1.5, 3.5	_	15		.,,	11		11	_		<u> </u>			
Input Current IIN Max.	-	0,18	18	±0.1	±0.1	±1	±1	-	±10 ⁻⁵	±0.1	μΑ			
3-State Output Leakage Current IOUT Max.	0,18	0,18	18	±0.4	±0.4	±12	±12	_	±10-4	±0.4	μΑ			

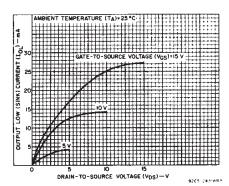


Fig. 2 — Typical output low (sink) current characteristics.

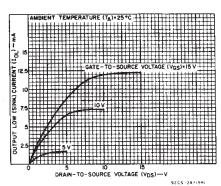


Fig. 3 — Minimum output low (sink) current characteristics.

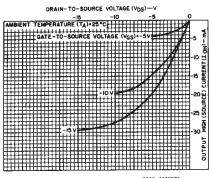


Fig. 4 — Typical output high (source) current characteristics.

CD4043B, CD4044B Types

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25° C; Input t_r , t_f = 20 ns, C_L = 50 pF, R_L = 200 K Ω

CHARACTERISTIC	V _{DD}	LIMITS ALL TYPES		UNITS
	(V)	TYP.	MAX.	
Propagation Delay	5	150	300	
Time: tpHL, tpLH	10	70 -	140	ns
SET or RESET to Q	15	50	100	
3-State Propagation Delay	5	115	230	
Time: ENABLE to Q	10	55	110	ns
tpHZ, tpZH	15	40	80	
	5	90	180	
tPLZ, tPZL	10	50	100	ns
	15	35	70	
Transition Time:	5	100	200	
tTHL, tTLH	10	50	100	ns
	15	40	80	ľ
Minimum	5	80	160	
SET or RESET	10	40	80	ns
Pulse Width, t _W	15	20	40	
Input Capacitance, (Any Input) C _{IN}		5	7.5	ρF

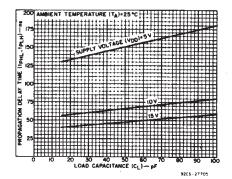


Fig. 7 — Typical propagation delay time vs. load capacitance—SET, RESET to Q, Q.

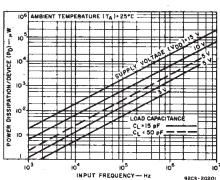


Fig. 8 — Typical power dissipation vs. frequency.

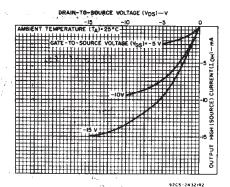


Fig. 5 — Minimum output high (source) current characteristics.

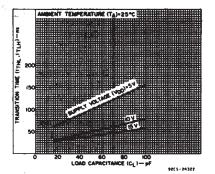


Fig. 6 — Typical transition time vs. load capacitance.

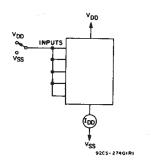


Fig. 9 - Quiescent device current,

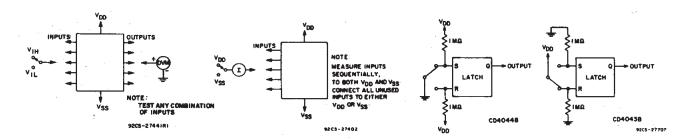


Fig. 10 — Input voltage.

Fig. 11 — Input current.

Fig. 12 - Switch bounce eliminator.

CD4043B, CD4044B Types

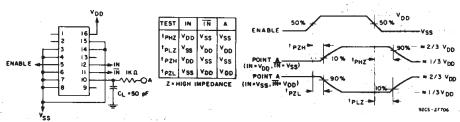
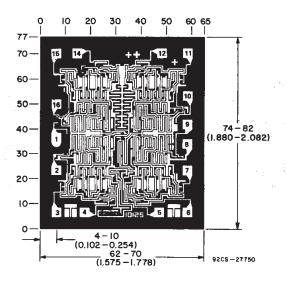
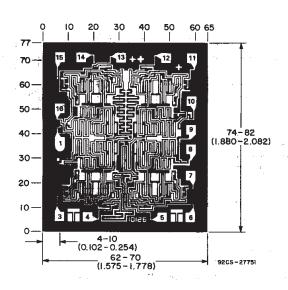




Fig. 13 - ENABLE propagation delay time test circuit and waveforms.

CHIP DIMENSIONS AND PAD LAYOUTS

CD4043BH

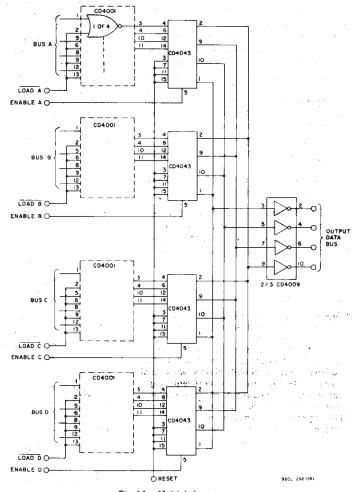


Fig. 14 - Multiple bus storage.

CD4044BH

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3}) inch).

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated