查询CD4085B供应商

捷多邦 专业PCB打样工厂,24小时加急出货

A-(0A) VOLTAGE (

OUTPUT

CD4085B Types

INHIBIT: -----

A1 сı

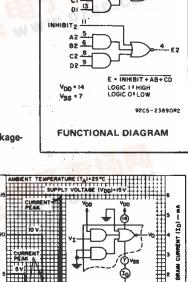
CMOS Dual 2-Wide 2-Input AND-OR-INVERT Gate

High-Voltage Types (20-Volt Rating)

Data sheet acquired from Harris Semiconductor

TEXAS

INSTRUMENTS


SCHS060

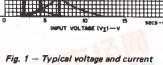
CD4085 contains a pair of AND-OR-INVERT gates, each consisting of two 2-input AND gates driving a 3-input NOR gate. Individual inhibit controls are provided for both A-O-I gates.

The CD4085B types are supplied in 14-lead dual-in-line ceramic packages (D and F suffixes), 14-lead dual-in-line plastic packages (Esuffix), and in chip form (H suffix).

Features:

- Medium-speed operation tpHL = 90 ns;
- tpLH = 125 ns (typ.) at 10 V
- Individual inhibit controls
- Standardized symmetrical output characteristics 100% tested for guiescent current at 20 V
- Maximum input current of 1 µA at 18 V over full package temperature range; 100 nA at 18 V and 25°C
- Noise margin (over full package-
- temperature range):
 - 1 V at V_{DD} = 5 V
- 2 V at V_{DD} = 10 V 2.5 V at V_{DD} = 15 V = 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"


MAXIMUM RATINGS, Absolute-Maximum Values:	
DC SUPPLY-VOLTAGE RANGE, (VDD)	
Voltages referenced to V _{SS} Terminal)	0.5V to +20V
INPUT VOLTAGE RANGE, ALL INPUTS	-0.5V to Vpp +0.5V
DC INPUT CURRENT, ANY ONE INPUT	±10mA
POWER DISSIPATION PER PACKAGE (PD):	
For $T_A = -55^{\circ}C$ to $+100^{\circ}C$	500mW
For T _A = +100°C to +125°CDerate Linearity at 1	2mW/ ^o C to 200mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR	
FOR T _A = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)	100mW
OPERATING-TEMPERATURE RANGE (TA)	
STORAGE TEMPERATURE RANGE (Tstg)	65°C to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	`
At distance 1/16 ± 1/32 inch (1.59 ± 0.79mm) from case for 10s max	+265°C


RECOMMENDED OPERATING CONDITIONS

dzsc.com

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIA	UNITS		
	Min.	Max.		
Supply Voltage Range (For T _A =Full Package Temperature Range)	3	18	v	

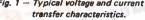


Fig. 2 - Min. and max. voltage transfer characteristics.

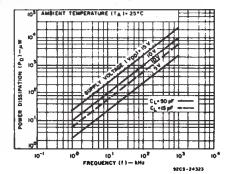
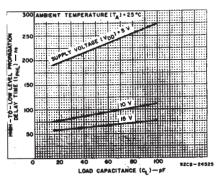
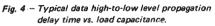




Fig. 3 - Typical power dissipation vs. frequency.

STATIC ELECTRICAL CHARACTERISTICS

							*				i i i i
CHARAC-			vs	LIMITS AT INDICATED TEMPERATURES (^O C)					UNITS		
TERISTIC	Vo	VIN	V _{DD}					+25			
·	(V)	(V)	(V)	-55	-40	+85	+125	Min.	Typ.	Max.	
Quiescent		0,5	5	1	1	30	30		0.02	1	
Device	-	0,10	10	2	2	60	60	-	0.02	2	μA
Current	_	0,15	15	4	4	120	120		0.02	4	μ~
IDD Max.	-	0,20	20	20	20	600	600		0.04	20	
Output Low		_			1.1	1 1 1	1 a 1 a			1	
(Sink)	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1		
Current,	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	-	• • •
I _{OL} Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8	-	mA
Output High	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1		mA
(Source)	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2	_	
Current,	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6	_	
IOH Min.	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	-	
Output Volt-											
age:	—	0,5	5		0.0)5		-	0	0.05	
Low-Level,	-	0,10	10		0.05			-	0	0.05	
V _{OL} Max.	-	0,15	15	0.05			-	0	0.05	v	
Output Volt-										·	
age:	-	0,5	5	4.95			4.95	5			
High-Level,	-	0,10	10		9.95			9.95	10	-	
V _{OH} Min.	-	0,15	15		14.95			14.95	15	-	
Input Low	0.5,4.5	-	5.	1.5			_		1.5	_	
Voltage,	1,9	- 1	10		3			—	-	3	
V _{IL} Max.	1.5,13.5	1	15	4				-	4	v	
Input High	0.5,4.5	-	5	3.5			3.5		-	Ť	
Voltage,	1,9		10	7			7		-		
V _{IH} Min.	1.5,13.5	-	15	11			11	-	-		
Input Current, I _{IN} Max.	-	0,18	18	±0.1	±0.1	±1	±1	-	±10-5	±0.1	μA

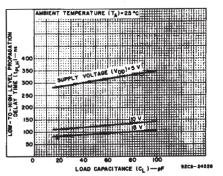
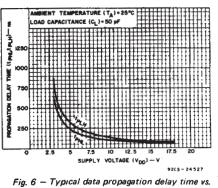
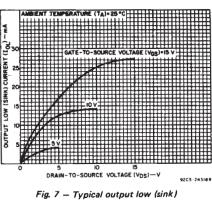
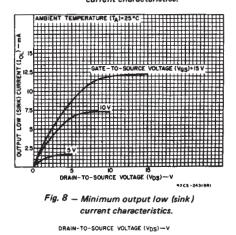



Fig. 5 — Typical data low-to-high level propagation delay time vs. load capacitance.



g. 6 --- Typical data propagation delay time vs. supply voltage.


CD4085B Types

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25°C; Input t_f, t_f = 20 ns, C_L = 50 pF, R_L = 200 K Ω

		CONDITIONS	LIMITS			
CHARACTERISTIC		V _{DD} V	Тур.	Max.	UNITS	
Programming Dalay Time (Data)		5	225	450	ns	
Propagation Delay Time (Data): High-to-Low Level,	^t PHL	10	90	180		
	PAL	15	65	130	1	
	-	5	310	620		
Low-to-High Level,	^t PLH	10	125	250	ns	
		15	90	180		
Proposition Delay Time (Inhihi		5	150	300	ns	
Propagation Delay Time (Inhibit High-to-Low Level,	tPHL	10	60	120		
		15	40	80		
Low-to-High Level,		5	250	500		
	^t PLH	10	100	200	ns	
		15	70	140		
Transition Time,		5	100	200	ns	
	^t THL ^{, t} TLH	10	50	100		
		15	40	80		
Input Capacitance,	CIN	Any Input	5	7.5	pF	

current characteristics.

- 25.10

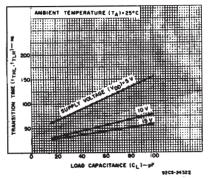


Fig. 9 – Typical transition time vs. load capacitance.

VDD

VSS

INPUTS

VDD

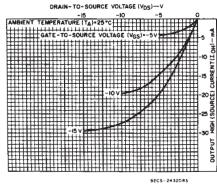
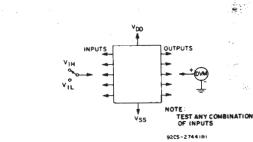
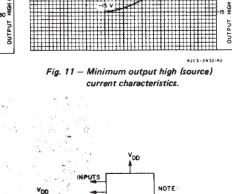
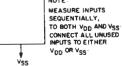
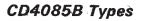





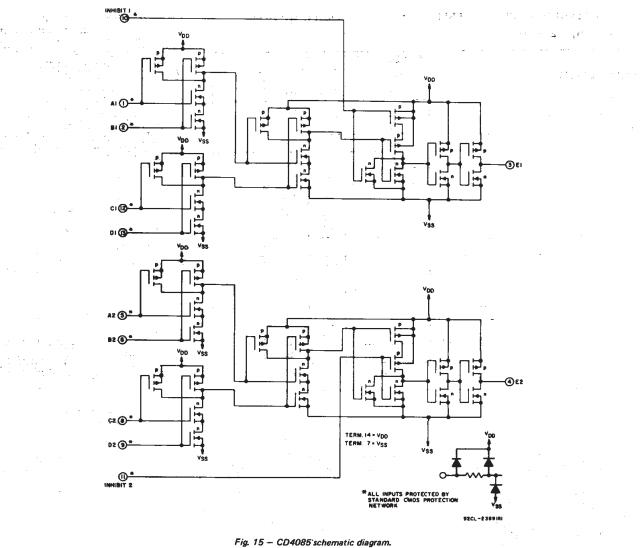
Fig. 10 - Typical output high (source) current characteristics.

92 (5 - 274 (2

Fig. 12 – Quiescent device current test circuit.

(IDO)


vss


9205-27401RI

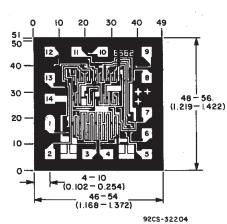

Fig. 13 - Input voltage test circuit.

Fig. 14 - Input current test circuit.

3

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch).

Dimensions and Pad Layout for CD40858H,

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated