

DATA 3 21

DATA 4 22

Data sheet acquired from Harris Semiconductor SCHS074

CMOS 4-Bit Latch/4-to-16

Line Decoders

High-Voltage Types (20-Volt Rating) CD4514B Output "High" on Select CD4515B Output "Low" on Select

CD4514B and -CD4515B consist of a 4-bit strobed latch and a 4-to-16-line decoder. The latches hold the last input data presented prior to the strobe transition from 1 to 0. Inhibit control allows all outputs to be placed at 0(CD4514B) or 1(CD4515B) regardless of the state of the data or strobe inputs.

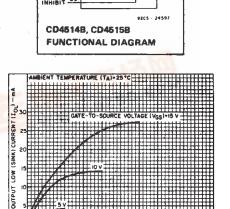
The decode truth table indicates all combinations of data inputs and appropriate selected outputs.

These devices are similar to industry types MC14514 and MC14515.

The CD4514B and CD4515B types are supplied in 24-lead hermetic duat-in-line ceramic packages (D and F suffixes), 24-lead duat-in-line plastic packages (E suffix), and in chip form (H suffix).

MAXIMUM RATINGS, Absolute-Maximum Values:

Features:


- Strobed input latch
- Inhibit control
- 100% tested for quiescent current at 20 V
- Maximum input current of 1 μA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
- Noise margin (over full package temperature range):

1 V at V_{DD} = 5 V 2 V at V_{DD} = 10 V

- 2.5 V at V_{DD} = 15 V 5-V, 10-V, and 15-V parametric ratings
- Standardized, symmetrical output characteristics.
- Meets all requirements of JEDEC Tentative Standard No. 13B; "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications:

- Digital multiplexing
- Address decoding
- Hexadecimal/BCD decoding
- Program-counter decoding
- Control decoder

4 TO 16

Fig. 1 — Typical output low (sink)

current characteristics.

TO-SOURCE VOLTAGE (VDS) - V

DC SUPPLY-VOLTAGE RANGE, (V_{DD}) Voltages referenced to V_{SS} Terminal) -0.5V to +20V INPUT VOLTAGE RANGE, ALL INPUTS -0.5V to V_{DD} +0.5V DC INPUT CURRENT, ANY ONE INPUT ±10mA POWER DISSIPATION PER PACKAGE (P_D): For $T_A = -55^{\circ}$ C to +100°C 500mW For $T_A = +100^{\circ}$ C to +125°C Derate Linearity at 12mW/°C to 200mW DEVICE DISSIPATION PER OUTPUT TRANSISTOR FOR $T_A = FULL$ PACKAGE-TEMPERATURE RANGE (All Package Types) 100mW OPERATING-TEMPERATURE RANGE (T_{AD}) 55°C to +125°C STORAGE TEMPERATURE RANGE (T_{SE}) -65°C to +150°C LEAD TEMPERATURE (DURING SOLDERING): At distance 1/16 \pm 1/32 inch (1.59 \pm 0.79mm) from case for 10s max +285°C

RECOMMENDED OPERATING CONDITIONS at $T_A = 25^{\circ}$ C, Except as Noted. For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	VDD	LIN	UNITS		
CHARACTERISTIC	(V)			ONTS	
Supply-Voltage Range (For T _A = Full Package- Temperature Range)	ZSC.C0	3	18	V	
Data Setup Time, t _S	5 10 15	150 70 40	- - -	ns	
Strobe Pulse Width, t _W	5 10 15	250 100 75	- - -	ņs	

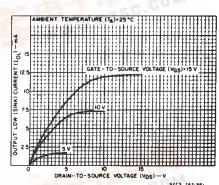


Fig. 2 — Minimum output low (sink) current characteristics.

Fig. 3 — Typical output high (source) current characteristics.

STATIC ELECTRICAL CHARACTERISTICS

CHARACTER- ISTIC	CONDITIONS			LIMITS AT INDICATED TEMPERATURES (°C)						LANGE	
	٧o	VIN	V _{DD}				+25			UNITS	
	(v)	(V)		-55	-40	+85	+125	Min.	Тур.	Mex.	
Quiescent Device Current,	_	0,5	5	5	5	150	150	_	0.04	5	
	-	0,10	10	10	10	300	300	-	0.04	10	
IDD Max.	-	0,15	15	20	20	600	600	-	0.04	20	μА
	_	0,20	20	100	100	3000	3000	-	0.08	100	1
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1 .	-	
(Sink) Current	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6		1
IOL Min.	1.5	0,15	15	4.2	4	2.8	2,4	3 4	6.8	_]
Output High (Source) Current, IOH Min.	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	-	mA
	2.5	0,5	5	-2	1.8	-1.3	-1.15	-1.6	-3.2]
	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6	-	I
	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	-	
Output Voltage:		0,5	5	0.05				-	0	0.05	
Low-Level, VOL Max.	_	0,10	10	0.05				-	0	0.05	
AOF Max	-	0,15	15	0.05				-	0	0.05	l v
Output Voltage:	-	0,5	5	4.95			4.95	5	-	*	
High-Level,	_	0,10	10	9.95				9.95	10	-	
VOH Min.	-	0,15	15	14.95				14.95	15	-	
Input Low	0.5, 4.5	_	5	1.5			_	-	1.5		
Voltage, VIL Max.	1, 9	_	10	3					_	3	
	1.5,13.5		15	4				_	I -	4	
Input High	0.5, 4.5		5	3.5			3.5			V	
Voltage, VIH Min.	1, 9	_	10	7				7	_	-	
	1.5,13.5	-	15	11				11	_	_]	
Input Current IJN Max.	-	0,18	18	±0.1	±0.1	±1	±1	-	±10 ⁻⁵	±0.1	μΑ

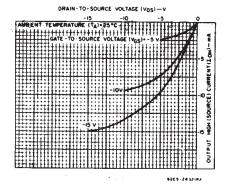


Fig. 4 — Minimum output high (source) current characteristics.

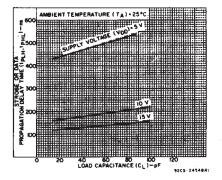


Fig. 5 — Typical strobe or data propagation delay time vs. load capacitance.

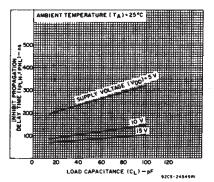


Fig. 6 — Typical inhibit propagation delay time vs. load capacitance.

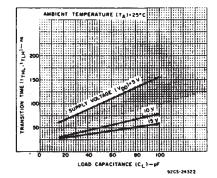


Fig. 7 — Typical low-to-high transition time vs. load capacitance.

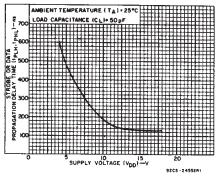


Fig. 8 — Typical strobe or data propagation delay time vs. supply voltage.

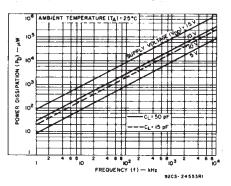


Fig. 9 — Typical power dissipation vs. frequency.

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25°C; Input t_r, t_f = 20 ns, C_L = 50 pF, R_L = 200 K Ω

	TEST COND	LIN				
CHARACTERISTIC		V _{DD}	Тур. Мах.		UNITS	
Propagation Delay Time: tpHL, tpLH Strobe or Data		5 10 15	485 185 135	970 370 270		
Inhibit		5 10 15	250 110 85	500 220 170	ns	
Transition Time, t _{TLH} , t _{THL}		5 10 15	100 50 40	200 100 80		
Minimum Strobe Pulse Width, t _W		5 10 15	125 50 40	250 100 75	ns	
Minimum Data Setup Time, t _S		5 10 15	75 35 20	150 70 40	ns	
Input Capacitance, CIN	Any Input	_	5	7.5	рF	

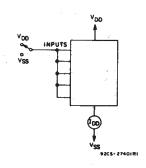


Fig. 10 - Quiescent device current test circuit.

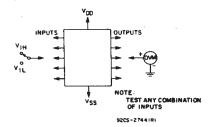


Fig. 11 + Input voltage test circuit.

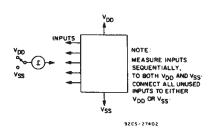


Fig. 12 - Input current test circuit.

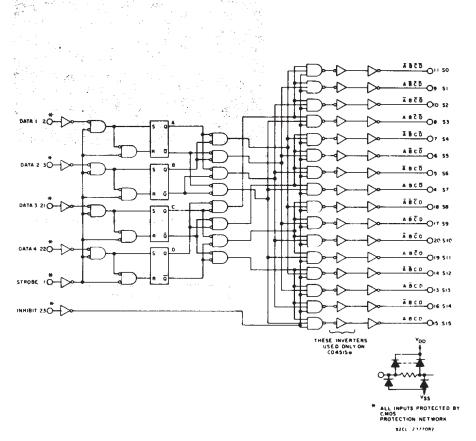


Fig. 13 - Logic diagram for CD4514B and CD4515B.

DECODE TRUTH TABLE (Strobe = 1)

INHIBIT		ECC		R	SELECTED OUTPUT
	D	С	В	A	CD4514B = Logic 1 (High) CD4515B = Logic 0 (Low)
0	0 0 0	0000	0 0 1 1	0 1 0 1	\$0 \$1 \$2 \$3
0 0 0	0000	1 1 1	0 0 1	0 1 0 1	S4 S5 S6 S7
0 0 0	1 1 1	0000	0 0 1 1	0 1 0 1	S8 S9 S10 S11
0 0 0	1 1 1	1 1 1 1	0 0 1 1	0 1 0 1	\$12 \$13 \$14 \$15
1	x	x	x	×	All Outputs = 0, CD4514B All Outputs = 1, CD4515B

X = Don't Care Logic 1 = high Logic 0 = low

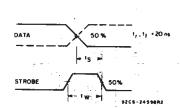
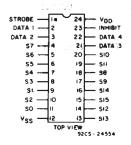
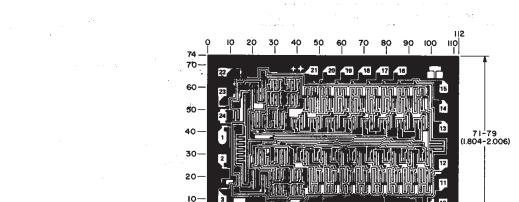




Fig. 14 — Waveforms for setup time and strobe pulse width.

CD4514B CD4515B TERMINAL ASSIGNMENT

Dimensions and Pad Layout for CD45158 Chip (Dimensions and pad layout for the CD4514B are identical) 9208-29457

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils $(10^{-3} \, \text{inch})$.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated