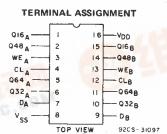
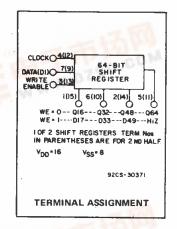


Data sheet acquired from Harris Semiconductor

CMOS Dual 64-Stage Static Shift Register

High-Voltage Types (20-Volt Rating)


 CD4517B dual 64-stage static shift register consists of two independent registers each having a clock, data, and write enable input and outputs accessible at taps following the 16th, 32nd, 48th, and 64th stages. These taps also serve as input points allowing data to be inputted at the 17th, 33rd, and 49th stages when the write enable input is a logic 1 and the clock goes through a low-to-high transition. The truth table indicates how the clock and write enable inputs control the operation of the CD4517B. Inputs at the intermediate taps allow entry of 64 bits into the register with 16 clock pulses. The 3-state outputs permit connection of this device to an external bus.


The CD4517B is supplied in 16-lead hermetic dual-in-line ceramic packages (D and F suffixes), 16-lead dual-in-line plastic packages (E suffix), and in chip form (H suffix).

Features:

- Low quiescent current 10 nA/pkg (typ.) at $V_{DD} = 5 V$
- Clock frequency 12 MHz (typ.) at $V_{DD} = 10 \text{ V}$
- Schmitt trigger clock inputs allow operation with very slow clock rise and fall times
- Capable of driving two low-power TTL loads. one low- power Schottky TTL load, or two HTL loads
- Three-state outputs
- 100% tested for quiescent current at 20 V
- Standardized, symmetrical output characteristics
- 5-V, 10-V and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13B,"Standard Specifications for Description of 'B' Series CMOS Devices'

CD4517B Types

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE RANGE, (VDD)	
Voltages referenced to VSS Terminal)	0.5V to +20V
INPUT VOLTAGE RANGE, ALL INPUTS	
DC INPUT CURRENT, ANY ONE INPUT	±10mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -55°C to +100°C	500mW
For T _A = +100°C to +125°C	Derate Linearity at 12mW/°C to 200mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR	,
FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Type	es)
OPERATING-TEMPERATURE RANGE (TA)	
STORAGE TEMPERATURE RANGE (Tstg)	-65°C to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance $1/16 \pm 1/32$ inch $(1.59 \pm 0.79$ mm) from case for $10s$ max.	+265°C

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIN		
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply · Voltage Range (For T _A = Full Package Temperature Range)	3	18	COVI

Applications:

- Time-delay circuits
- Scratch-pad memories
- General-purpose serial shift-register applications

TRUTH TABLE

Clock	Write Enable	Data	Stage 16 Tap	Stage 32 Tap	Stage 48 Tap	Stage 64 Tap
0	0	Х	Q16	Q32	Q48	Q64
0	1	×	Z	Z.	z	z
1 1	0	×	Q16	Q32	Q48	Q64
1	1	×	Z	Z.	Z	z
	0	Diln	Q16	Q32	Q48	Q64
	1	DI In	D17 In	D33 In	D49 In	Z
	0	х	Q16	Q32	Q48	Ω64
_	1	x	Z	z	z	z

X = Don't Care

Z = High Impedance

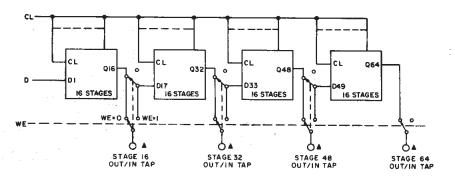
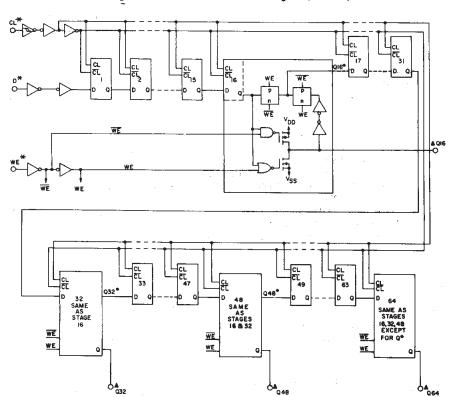
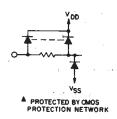




Fig. 1—CD4517B functional block diagram (one half).

92CM - 3109BRI

92CL - 32765

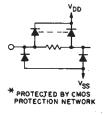


Fig. 2—CD4517B logic block diagram (one half).

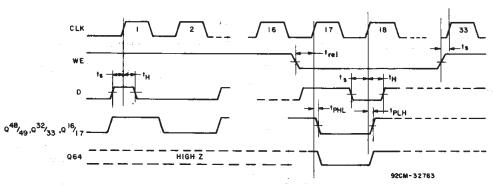


Fig. 3—Dynamic test waveforms.

STATIC ELEC					-	NDICAT	ED TEM	DEDAT	IDEC /O	<u> </u>	U
TERISTIC	CONDITIONS			LIMITS AT INDICATED TEMPERA					TURES (°C)		
	Vo	VIN	V _{DD}					+25			S
	(V)	(V)	(V)	-55	-40	+85	+125	Min.	Тур.	Max.	
Quiescent Device		0,5	- 5	5	5	150	150	-	0.04	• 5	
		0,10	10	10	10	300	300	_	0.04	10	μA
Current,		0,15	15	20	20	600	600	<u>_</u>	0.04	20	
IDD Max.	_	0,20	20	100	100	3000	3000		0.08	100	
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	-	
(Sink) Current	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	-	
OL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8	_	
Output High	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	_	m
(Source)	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2	-	
Current, IOH Min.	9.5	0,10	10	1.6	-1.5	-1.1	-0.9	-1.3	→2.6		
OH WILL	13.5	0,15	15	-4.2	-4	-2.8	- 2.4	-3.4	-6.8	— .	
Output Voltage:	_	0,5	5	0.05				_	0	0.05	
Low-Level, VOL Max.		0,10	10	0.05					0	0.05	1
	_	0,15	15	0.05				_	0	0.05	١,
Output	_	0,5	5	4.95 4.95 5					5	_	'
Voltage:	-	0,10	10	9.95				9.95	10	_	
High-Level, V _{OH} Min.	_	0,15	15		14.	14.95	15	_			
Input Low	0.5,4.5	_	5		1.5					1.5	
Voltage	1,9		10	3						3	
	1.5,13.5		15		4 -					4	١,
Input High	0.5,4.5	_	5	,	3	3.5	_	-	1		
Voltage,	1,9	-	10		7					-	1
	1.5,13:5		15		-11-			11	_	-	
Input Current I _{IN} Max.	_	0,18	18	±0.1	±0.1	±1	±1	-	±10 ⁻⁵	±0.1	μ
3-State Output Leakage Current IOUT Max.	0,18	0,18	18	±0.4	±0.4	±12	±12	_	±10 ⁻⁴	±0.4	μ

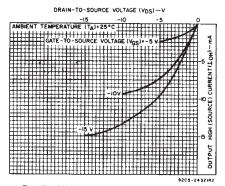


Fig. 7—Minimum p-channel output high (source) current characteristics.

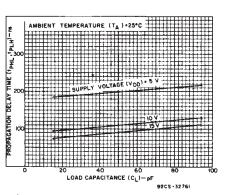


Fig. 8—Typical propagation delay time as a function of load capacitance.

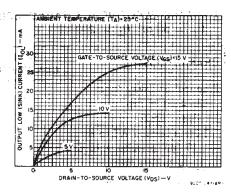


Fig. 4—Typical n-channel output low (sink) current characteristics.

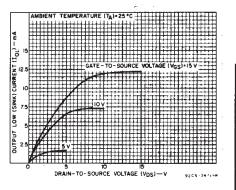


Fig. 5—Minimum n-channel output low (sink) current characteristics.

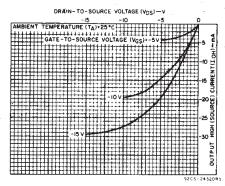


Fig. 6—Typical p-channel output high (source) current characteristics.

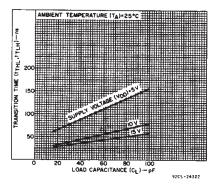


Fig. 9—Typical transition time a a function of load capacitance.

DYNAMIC ELECTRICAL CHARACTERISTICS at $T_A=25\,^{\circ}C$; Input t_f , $t_f=20\,ns$, $C_L=50\,pF$, $R_L=200\,k\Omega$

CHARACTERISTIC	TEST	V 00	LIMITS				
	CONDITIONS	V _{DD} (V)	Min.	Тур.	Max.	UNITS	
Propagation Delay Time:		5	_	200	400		
CL to Bit 16 Tap		10		110	220	ns	
^t PHL ^{, t} PLH		15	_	90	180		
3-State Output, WE to Bit		5		75	150		
16 Tap t _{PHZ} , t _{PLZ} ; t _{PZH} ,		. 10	_	40	80	. ns	
tpZL (See Note)		15	_	30	60		
Output Transition Time		5	_	100	200		
tTHL, tTLH		10		50	100	กร	
THE TEN		15	_	40	80		
Write Enable-to-Clock		5	0	-50	_		
Setup Time	-	10	0	-25	_	ns	
· · · · · · · · · · · · · · · · · · ·		15		-15			
Data-to-Clock		5	20	0	_		
Setup Time, t _S		10 15	10 10	0	_	ns	
Minimum Write		5	10		100	-	
Enable-to-Clock		10	_	50 25	100 50		
Release Time		15	_	20	40	ns	
Minimum		5		100	200		
Data-to-Clock		10	_	50	100	ns	
Hold Time, t _H		15	_	25	50	""	
Minimum Clark Bules		5	_	90	180		
Minimum Clock Pulse Width, t _W		10		40	80	ns	
width, tw		15		25	50		
Maximum Clock Input		5	3	6			
Frequency, f _{CL}		10	6	12		MHz	
		15	8	15			
Maximum Clock Input Rise		5	UNLIMITED				
or Fall Time, tfCL trCL		10			μS		
 		15		I			
Input Capacitance C _{IN}	Any Inp	ut	_	5	7.5	pF	

NOTE: Measured at the point of 10% change in output with an output load of 50 pF, RL = 1 k Ω to VDD for tpZL, tpLZ and RL = 1 k Ω to VSS for tpZH, tpHZ.

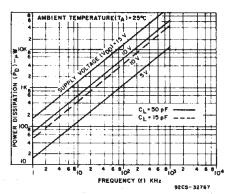
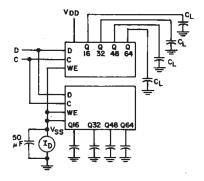



Fig. 10—Typical power dissipation as a function of frequency.

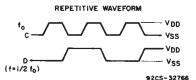


Fig. 11—Dynamic power dissipation test circuit and waveforms.

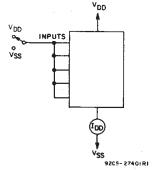


Fig. 12—Quiescent-device-current test circuit.

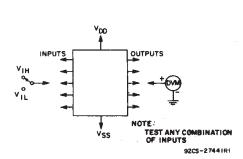


Fig. 13-Input-voltage test circuit.

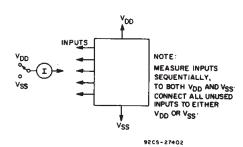
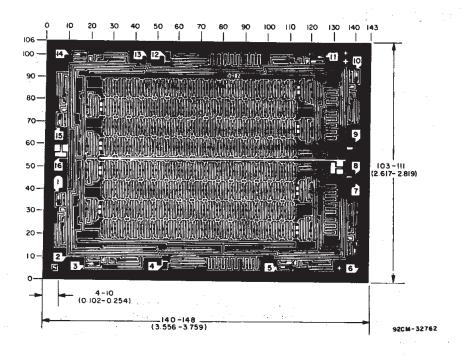



Fig. 14—Input current test circuit.

Dimensions and pad layout for CD4517B.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch).

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated