TEXAS INSTRUMENTS Pata sheet acquired from Harris Se

Data sheet acquired from Harris Semiconductor SCHS083

CD4536B Types

CMOS Programmable Timer

High-Voltage Types (20-Volt Rating)

■ CD4536B is a programmable timer consisting of 24 ripple-binary counter stages. The salient feature of this device is its flexibility. The device can count from 1 to 2²⁴ or the first 8 stages can be bypassed to allow an output, selectable by a 4-bit code. from any one of the remaining 16 stages. It can be driven by an external clock or an RC oscillator that can be constructed using onchip components. Input IN1 serves as either the external clock input or the input to the on-chip RC oscillator. OUT1 and OUT2 are connection terminals for the external RC components. In addition, an on-chip monostable circuit is provided to allow a variable pulse width output. Various timing functions can be achieved using combinations of these capabilities.

A logic 1 on the 8-BYPASS input enables a bypass of the first 8 stages and makes stage 9 the first counter stage of the last 16 stages. Selection of 1 of 16 outputs is accomplished by the decoder and the BCD inputs A, B, C and D. MONO IN is the timing input for the on-chip monostable oscillator. Grounding of the MONO IN terminal through a resistor of 10K ohms or higher, disables the one-shot circuit and connects the decoder directly to the DECODE OUT terminal. A resistor to VDD and a capacitor to ground from the MONO IN terminal enables the one-shot circuit and controls its pulse width.

A fast test mode is enabled by a logic 1 on 8-BYPASS, SET, and RESET. This mode

Features:

- 24 flip-flop stages —— counts from 2° to 2²⁴
- Last 16 stages selectable by BCD select code.
- Bypass input allows bypassing first 8 stages
- On-chip RC oscillator provision
- Clock inhibit input
- Schmitt-trigger in clock line permits operation with very long rise and fall times
- On-chip monostable output provision
- Typical f_{CL} = 3 MHz at V_{DD} = 10 V
- Test mode allows fast test sequence
- Set and reset inputs
- Capable of driving two low power TTL loads, one lower-power Schottky load, or two HTL loads over the rated temperature range
- Standardized, symmetrical output characteristics
- 100% tested for quiescent current at 20 V
- 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

divides the 24-stage counter into three 8-stage sections to facilitate a fast test sequence.

The CD4536B types are supplied in 16-lead hermetic dual-in-line ceramic packages (D and F suffixes), 16-lead dual-in-line plastic packages (E suffix), and in chip form (H suffix).

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIN	IITS	UNITS	
	Min. Max			
Supply-Voltage Range (For TA = Full		0.0		
Package Temperature Range)	3	18	V	

DECODE OUT SELECTION TABLE

Ы	С	В	A	NUMBER OF STAGES IN DIVIDER CHAIN					
			8-BYPASS = 0	8-BYPASS = 1					
0	0	0	0	9	1				
0	0	0	1	10	2				
Q	0	1	0	11	3				
0	0	1	1	12	4				
0	1	0	0	13	5				
0	1	0	1	. 14	6				
0	1	1	0	15	7				
0	1	1	1	16	8				
1	0	0	0	17	9				
1	0	0	1	18	10				
1	0	1	0	19	11				
1	0	1.	1	20	12				
1	1	0	0	21	13				
1	1	0	1	22	14				
1	1	1	0	23	15				
1	1	1	1	24	16				

0 = Low Level 1 = High Level

MUMIXAM	RATINGS, Absolute-Maximum	Values:	
	Y-VOLTAGE DANCE MA-1		

odf.dzsc.com

CHARAC- TERISTIC	CON	DITIO	NS	LIMITS AT INDICATED TEMPERATURES (°C)							2 I T
	v _o	VIN	V _{DD}						+25		S
	(V)	(V)	(V)	-55	-40	+85	+125	Min.	Тур.	Max.	
Quiescent	_	0,5	5	5	5	150	150	-	0.04	5	Г
Device		0,10	10	10	10	300	300		0.04	10	u#
Current,	_	0,15	15	20	20.	600	600	,, - ,, ,	0.04	20	
IDD Max.	-	0,20	20	100	100	3000	3000	- ~	0.08	100	
Output Low (Sink) Current IOL Min.	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1		
	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	::: <u>+</u> :::	-
	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8	, <u> </u>	
Outside Ulish	4.6	0,5	5	-0.64	-0.61	-0,42	-0.36	-0.51	-1	_	m
Output High (Source)	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2	1, — 1.	
Current,	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6		
OH Min:	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	_	
Output Voltage:	-	0,5	5	0.05				_	0	0.05	
Low-Level,	-	0,10	10	0.05					0	0.05	1
VOL Max.	₹.	0,15	15	0.05				0	0.05	١,	
Output	., _;	0,5	5	4.95				4.95	s 5		
Voltage:	-	0,10	10		9	95		9.95	10	-]
High-Level, VOH Min.		0,15	. 15		14	.95		14.95	15	-	
Input Low	0.5,4.5	_	5			1.5		_	_	1.5	
Voltage	1,9	_	10			3		_	-	3	
VIL Max.	1.5,13.5		15			4			_	4] 、
Input High Voltage, V _{IH} Min.	0.5,4.5	-	5		٤.	3.5		3.5	-	-	
	1,9	-	10			7 :		7	–		
	1.5,13.5	_	15			11		- 11	-]
Input Current	_	0,18	18	±0.1	±0.1	±1	±1		±10 ⁻⁵	±0.1	"

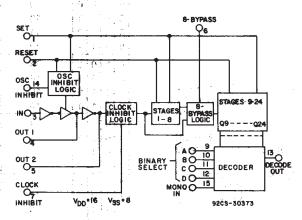


Fig. 1 - Functional block diagram.

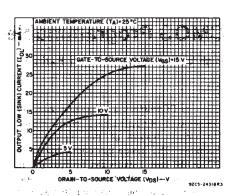


Fig. 2—Typical output low (sink) current characteristics.

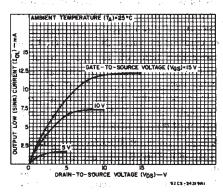


Fig. 3-Minimum output low (sink) current characteristics.

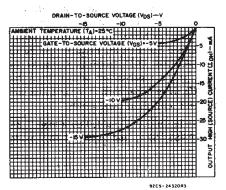


Fig. 4—Typical output high (source) current characteristics.

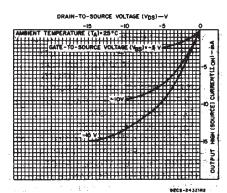


Fig. 5—Minimum output high (source) current characteristics.

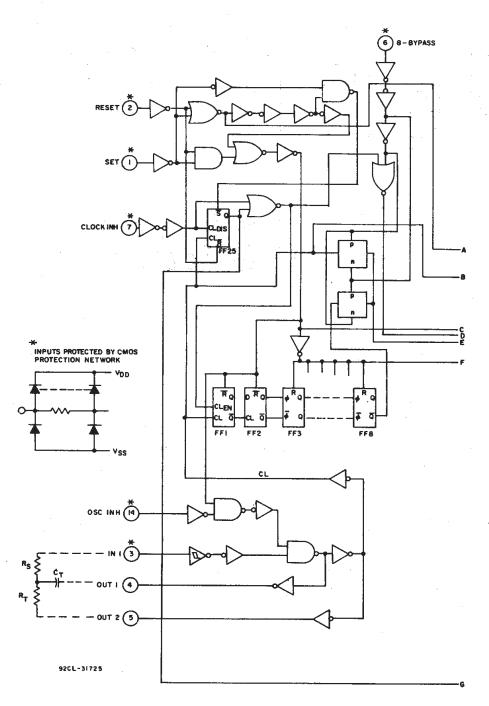


Fig.6 - Logic diagram for CD4536B [continued on next page].

NOTE:
$$f \approx \frac{1}{38 + C +}$$
, $R_S \approx (5 \rightarrow 10) \times R_T$

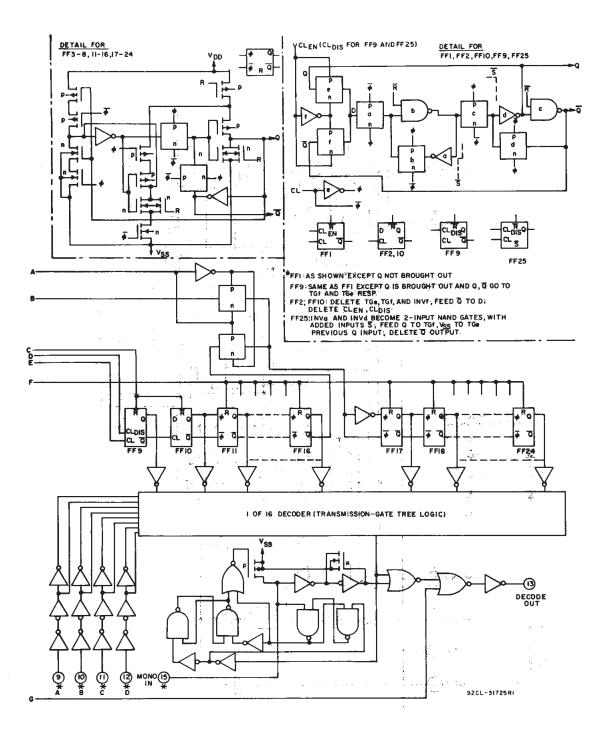


Fig.6 - Logic diagram for CD4536B [continued from previous page].

The second section of the second second section of

The second secon

DYNAMIC ELECTRICAL CHARACTERISTICS, at $T_A=25\,^{\circ}C$, Input t_f , $t_f=20$ ns, $C_L=50$ pF, $R_L=200$ kQ

CHARACTERISTIC	V _{DD}	LIMITS				
OHARACIERISTIC	(N)	Min.	Тур.	Max.	UNITS	
Propagation Delay Times:	- 5	_	1	2		
Clock to Q1, 8-Bypass High	10	_	0.5	1	μS	
tpHL, tpLH	15	_	0.35	0.7		
Clock to Q1, 8-Bypass Low	5		2.5	5		
^t PHL, ^t PLH	10	_	0.8	1.6		
PHO PLH	15	_	0.6	1.0	μ\$	
Clock to Q16, T _{PHL} t _{PLH}	5		5.4	8		
, FIRE FER	10	l	1.5	3	μS	
	15	l _	1	2	μο	
Q _n to Q _{n+1} , t _{PHL} , t _{PLH}	5		150	300		
THE STATE	10.	_	.75	150	ns	
	15	1 _	50	100	113	
Set to Q _n , t _{PLH}	5		300	600		
OUT TO THE	10	_	125	250		
	15		80	160	กร	
Reset to Q _n , tpHL						
Reset to Q _n , t _{PHL}	5 10	-	3	6		
	15	_	0.75	1.5	μS	
Transition Time, tru, tru						
Transition Time, t _{THL} , t _{TLH}	5	_	100	200		
	10		50	100	กร	
Minimum Pulse Widths:	15		40	80		
Clock	5		200	400		
COCK	10	-	75	150	ns	
	15		50	100		
Set	5	*****	200	400		
	10	—	100	200	ns	
	15	_	60	120		
Reset	5	l -	3	6		
1	10	<u>-</u>	1	2	μS	
	15		0.75	1.5		
Minimum Set Recovery Time,	5	l —	2.5	5		
	10	 -	1 7	2	μS	
The state of the s	15		0.6	1.6		
Minimum Reset Recovery Time,	5	-	3.5	7	l : ⁻	
The second section of the second section is a second second section of the second seco	10	<u> </u>	1.5	3	μS	
	15		1	2	f 1	
Maximum Clock Pulse Input	. 5	0.5	1	_		
Frequency, f _{CL}	10	1.5	3	-	MHz	
	15	2.5	5			
Maximum Clock Pulse Input	5,10,15					
Rise or Fall Time, t _r , t _f		I	ilimited	.	μS	

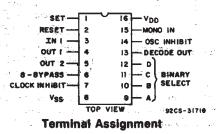


Fig. 9—Typical propagation delay time as a function of load capacitance (CLOCK to Q₁₀, 8-BYPASS high).

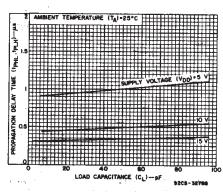


Fig. 7—Typical propagation delay time as a function of load capacitance (CLOCK to Q₁, 8-BYPASS high).

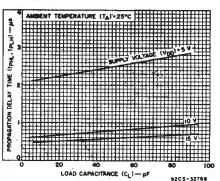
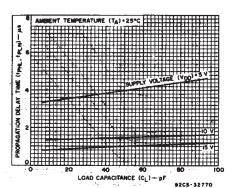



Fig. 8—Typical propagation delay time as a function of load capacitance (CLOCK to Q₁, 8-BYPASS low).

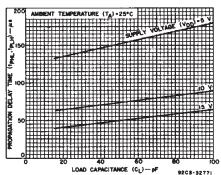


Fig. 10—Typical propagation delay time as a function of load capacitance (Q_N to Q_{N+1}).

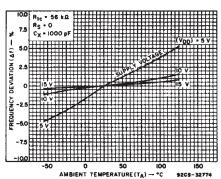
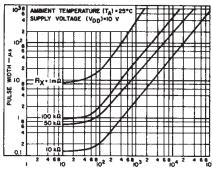



Fig. 13—Typical RC oscillator frequency deviation as a function of ambient temperature ($R_S = 0$).

EXTERNAL CAPACITANCE $(C_X) - pF$ $_{92CS-327}Fig.$ 16—Typical pulse width as a function of external capacitance $(V_{DD} = 10 \text{ V})$.

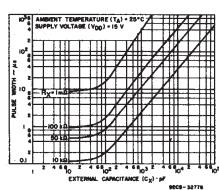


Fig. 17—Typical pulse width as a function of external capacitance ($V_{DD} = 15 \text{ V}$).

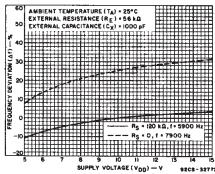


Fig. 11—Typical RC oscillator frequency deviation as a function of supply voltage.

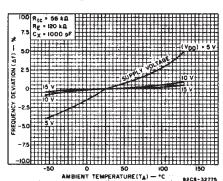


Fig. 14—Typical RC oscillator frequency deviation as a function of ambient temperature (R_S = 120 kΩ).

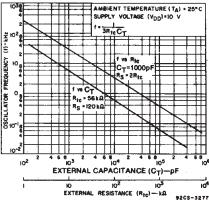


Fig. 12—Typical RC oscillator frequency deviation as a function of time constant resistance and capacitance.

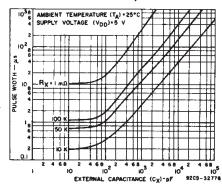


Fig. 15—Typical pulse width as a function of external capacitance ($V_{DD} = 5 \text{ V}$).

	Functional Test Sequence								
inputs				Outputs	Comments				
In 1 Set		Reset	8-Bypass	Decode Out Q1 thru Q24	All 24 steps are in Reset mode				
_ 1	0	1	1	0	1				
1	1	1	1	0	Counter is in three 8-stage section in parallel mode				
0	1	1	1 .	0	First "1" to "0" transition of clock				
1 0 - -	1	1	1		255 "1" to "0" transitions are clocked in the counter				
0	1	1 1	1	1	The 255 "1" to "0" transition				
0	0	0	0	1	Counter converted back to 24 stages in series mode Set and Reset must be connected together and simultaneously go from "1" to "0"				
1	0	0	0	1	In Switches to a "1"				
0	0	0	0	0	Counter Ripples from an all "1" state to an all "0" state				

FUNCTIONAL TEST SEQUENCE

Test Function (Figure 23) has been included for the reduction of test time required to exercise all 24 counter stages. This test function divides the counter into three 8-stage sections and 255 counts are

loaded in each of the 8-stage sections in parallel. All flip-flops are now at a "1". The counter is now returned to the normal 24-steps in series configuration. One more pulse is entered into In₁ which will cause the counter to ripple from an all "1" state to an all "0" state.

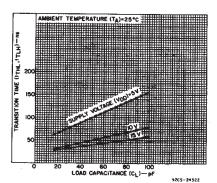


Fig. 18-Typical transition time as a function of load capacitance.

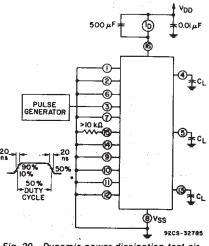
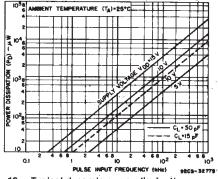



Fig. 20—Dynamic power dissipation test circuit and waveform.

19 — Typical dynamic power dissipation as a function of input pulse frequency.

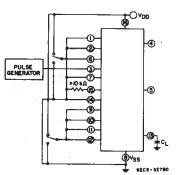
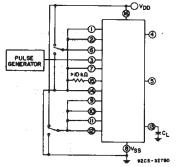



Fig. 21—Switching time test circuit.

OUTPUTS v_{ss} TEST ANY COMBINATION OF INPUTS 92CS-2744IRI

Fig. 25-Input-voltage test circuit.

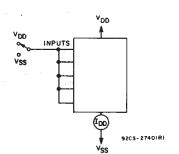


Fig. 26—Quiescent-device current test circuit.

IN1	SET	RESET	CLOCK INH	OSC INH	OUT1	OUT2	DECODE OUT
	0	0	0,	. 0			No Change
7	0	0	-0	0			Advance to Next State
Х	135	. 0	0	0	- 6	1	. 1
X :	0 📜	i da j	0	0	0	1	0
x	0	0	1	0			No Change
0	0	.O	0	×	0	1	No Change
1	0	0	0		1		Advance to Next State

1 = High Level X = Don't Care 0 = Low Level

Fig. 22—Input waveforms for switching-time test circuit.



Fig. 23-Functional test circuit.

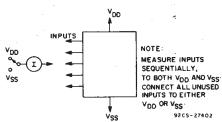


Fig. 24-Input-current test circuit.

APPLICATIONS

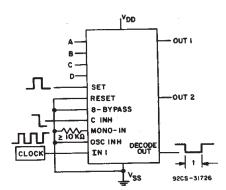


Fig. 27—Time interval configuration using external clock; set and clock inhibit functions.

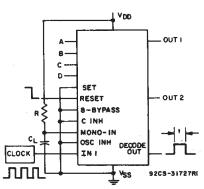


Fig. 28—Time interval configuration using external clock; reset and output monostable to achieve a pulse output.

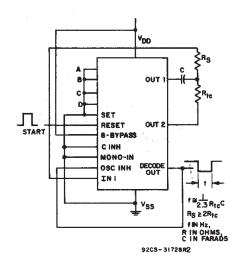
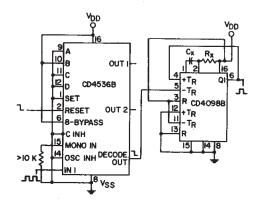



Fig. 29—Time interval configuration using onchip RC oscillator and reset input to initiate time interval.

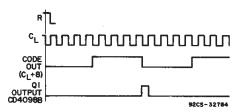


Fig.30 — Application showing use of CD4098B and CD4536B to get decode pulse 8 clock pulses after Reset pulse.

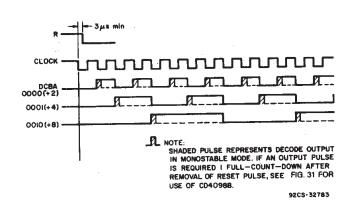
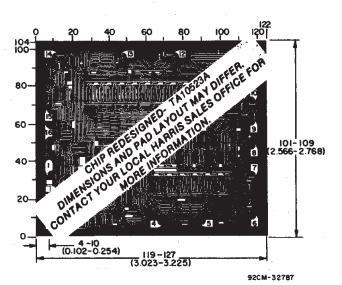



Fig.31 - CD4536B Timing Diagram.

Dimensions and pad layout for CD4536BH.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch).

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated