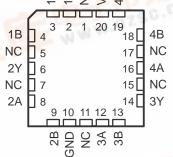
查询\$N54LV02 供应商

捷多邦,专业PCB打样工厂,2-会N54层/1022, SN74LV02 QUADRUPLE 2-INPUT POSITIVE-NOR GATES

SCLS183B - FEBRUARY 1993 - REVISED APRIL 1996

- EPIC ™ (Enhanced-Performance Implanted CMOS) 2-µ Process
- Typical V_{OLP} (Output Ground Bounce)
 < 0.8 V at V_{CC}, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 > 2 V at V_{CC}, T_A = 25°C
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per JEDEC Standard JESD-17
- Package Options Include Plastic Small-Outline (D), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) and Ceramic Flat (W) Packages, Ceramic Chip Carriers (FK), and Ceramic (J) 300-mil DIPs


description

These quadruple 2-input positive-NOR gates are designed for 2.7-V to 5.5-V V_{CC} operation.

The <u>'LV02</u> perform Boolean function $Y = \overline{A + B}$ or $Y = \overline{A \cdot B}$ in positive logic.

The SN74LV02 is available in TI's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

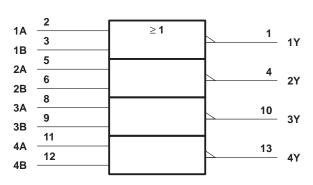
SN54LV02 J OR W PACKAGE SN74LV02 D, DB, OR PW PACKAGE (TOP VIEW)									
1Y [1 14] V _{CC} 1A [2 13] 4Y 1B [3 12] 4B 2Y [4 11] 4A 2A [5 10] 3Y 2B [6 9] 3B GND [7 8] 3A									
SN54LV02FK PACKAGE (TOP VIEW) $\forall \neq \forall Z > 4$									

NC – No internal connection

The SN54LV02 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74LV02 is characterized for operation from –40°C to 85°C.

FUNCTION TABLE (each gate)								
INPU	OUTPUT							
Α	В	Y						
н	Х	- L						
Х	Н	L						
L	L	22 н						

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


Cisa trademark of Texas Instruments Incorporated.

SN54LV02, SN74LV02 QUADRUPLE 2-INPUT POSITIVE-NOR GATES

SCLS183B – FEBRUARY 1993 – REVISED APRIL 1996

logic symbol[†]

logic diagram, each gate (positive logic)

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for the D, DB, J, PW, and W packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[‡]

Supply voltage range, V _{CC}	.5 V to V _{CC} + 0.5 V
Input clamp current, I_{IK} (V _I < 0 or V _I > V _{CC})	
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$)	
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	±25 mA
Continuous current through V _{CC} or GND	±50 mA
Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air) (see Note 3): D package	
DB or PW package	0.5 W
Storage temperature range, T _{stg}	–65°C to 150°C

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. This value is limited to 7 V maximum.
- 3. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.

SN54LV02, SN74LV02 QUADRUPLE 2-INPUT POSITIVE-NOR GATES

SCLS183B - FEBRUARY 1993 - REVISED APRIL 1996

recommended operating conditions (see Note 4)

		SN54	SN54LV02 SN74LV02				
		MIN	MAX	MIN	MAX	UNIT	
Supply voltage		2.7	5.5	2.7	5.5	V	
Llich lovel input voltoge	$V_{CC} = 2.7 V \text{ to } 3.6 V$	2		2		V	
Hign-level input voltage	$V_{CC} = 4.5 V \text{ to } 5.5 V$	3.15	4	3.15		V V	
Low-level input voltage	$V_{CC} = 2.7 V \text{ to } 3.6 V$		0.8		0.8	v	
	$V_{CC} = 4.5 V \text{ to } 5.5 V$		1.65		1.65	v	
Input voltage		0	< VCC	0	VCC	V	
Output voltage		Jo Co	VCC	0	VCC	V	
Lieb land autout autout	$V_{CC} = 2.7 V \text{ to } 3.6 V$	202	-6		-6	mA	
High-level output current	$V_{CC} = 4.5 V \text{ to } 5.5 V$	2	-12		-12	mA	
	V _{CC} = 2.7 V to 3.6 V		6		6	~	
Low-level output current $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$			12		12	mA	
Input transition rise or fall rate		0	100	0	100	ns/V	
Operating free-air temperature		-55	125	-40	85	°C	
	High-level input voltage Low-level input voltage Input voltage Output voltage High-level output current Low-level output current Input transition rise or fall rate	High-level input voltage $V_{CC} = 2.7 \vee \text{to } 3.6 \vee$ High-level input voltage $V_{CC} = 4.5 \vee \text{to } 5.5 \vee$ Low-level input voltage $V_{CC} = 2.7 \vee \text{to } 3.6 \vee$ Output voltage $V_{CC} = 4.5 \vee \text{to } 5.5 \vee$ High-level output current $V_{CC} = 2.7 \vee \text{to } 3.6 \vee$ High-level output current $V_{CC} = 2.7 \vee \text{to } 3.6 \vee$ Low-level output current $V_{CC} = 2.7 \vee \text{to } 3.6 \vee$ Low-level output current $V_{CC} = 2.7 \vee \text{to } 3.6 \vee$ Input transition rise or fall rate $V_{CC} = 4.5 \vee \text{to } 5.5 \vee$			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	

NOTE 4: Unused inputs must be held high or low to prevent them from floating.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED	TEST CONDITIONS	Veet	SN54LV02			SN74LV02			LINUT
PARAMETER	TEST CONDITIONS	Vcc†	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
	I _{OH} = -100 μA	MIN to MAX	$V_{CC} - 0$).2		$V_{CC} - 0$.2		
VOH	$I_{OH} = -6 \text{ mA}$	3 V	2.4			2.4			V
	$I_{OH} = -12 \text{ mA}$	4.5 V	3.6			3.6			
	I _{OL} = 100 μA	MIN to MAX			0.2			0.2	
VOL	I _{OL} = 6 mA	3 V		Ē	0.4			0.4	V
	I _{OL} = 12 mA	4.5 V		EL	0.55			0.55	
1.	$V_{I} = V_{CC}$ or GND	3.6 V		2	±1			±1	μA
łı		5.5 V		ί Ω	±1			±1	μΑ
laa		3.6 V	0		20			20	
Icc	$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	5.5 V	E.		20			20	μA
∆ICC	One input at V_{CC} – 0.6 V, Other inputs at V_{CC} or GND	3 V to 3.6 V			500			500	μΑ
C _i		3.3 V		2.5			2.5		pF
	$V_{I} = V_{CC}$ or GND	5 V		2.5			2.5		рг

[†] For conditions shown as MIN or MAX, use the appropriate values under recommended operating conditions.

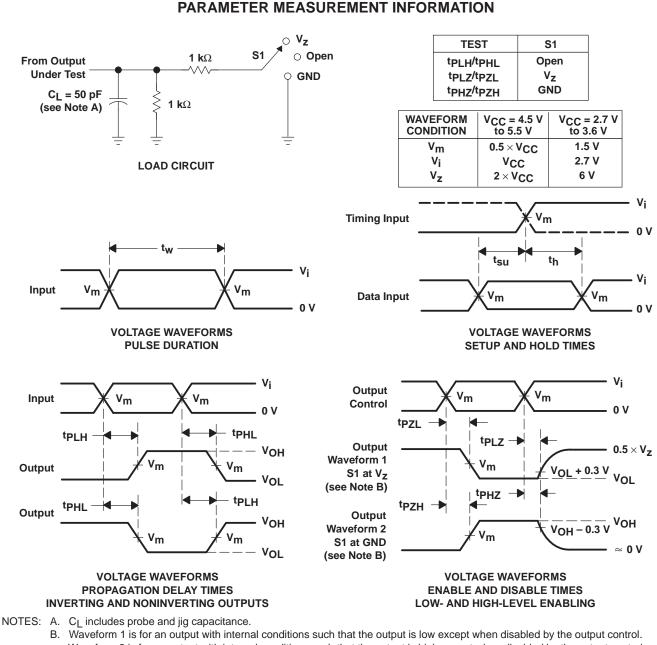
switching characteristics over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

			~	SN54LV02	~	
PARAMETER	ETER FROM TO (INPUT) (OUTPUT)		$V_{CC} = 5 V \pm 0.5 V$	V_{CC} = 3.3 V \pm 0.3 V	$V_{CC} = 2.7 V$	UNIT
			MIN TYP MAX	MIN TYP MAX	MIN MAX	
^t pd	A	Y	5 10	8 13	16	ns

SN54LV02, SN74LV02 QUADRUPLE 2-INPUT POSITIVE-NOR GATES

SCLS183B - FEBRUARY 1993 - REVISED APRIL 1996

switching characteristics over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)


Γ				SN74LV02								
	PARAMETER	FROM TO (INPUT) (OUTPUT)	V_{CC} = 5 V \pm 0.5 V		V_{CC} = 3.3 V \pm 0.3 V			V _{CC} = 2.7 V		UNIT		
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX		
	^t pd	А	Y		5	10		8	13		16	ns

operating characteristics, $T_A = 25^{\circ}C$

PARAMETER		TEST CONDITIONS	V _{CC}	TYP	UNIT
Card			3.3 V	16	ъĘ
Cpd	Power dissipation capacitance per gate	C _L = 50 pF, f = 10 MHz	5 V	20	рF

SCLS183B - FEBRUARY 1993 - REVISED APRIL 1996

- Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. tPLH and tPHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated