查询SN74LV161284供应商

, 24小时加急**SN9**4LV161284 专业PCB打样工厂 19-BIT BUS INTERFACE

SCLS426A - OCTOBER 1998 - REVISED FEBRUARY 1999

- 1.4-kΩ Pullup Resistors Integrated on All **Open-Drain Outputs Eliminate the Need for Discrete Resistors**
- Designed for the IEEE Std 1284-I (Level-1 Type) and IEEE Std 1284-II (Level-2 Type) **Electrical Specifications**
- Flow-Through Architecture Optimizes PCB Lavout
- Latch-Up Performance Exceeds 250 mA Per **JEDEC 17**
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin-Shrink Small-Outline (DGG) Packages

description

The SN74LV161284 is designed for 4.5-V to 5.5-V V_{CC} operation. This device provides asynchronous two-way communication between data buses. The control-function implementation minimizes external timing requirements.

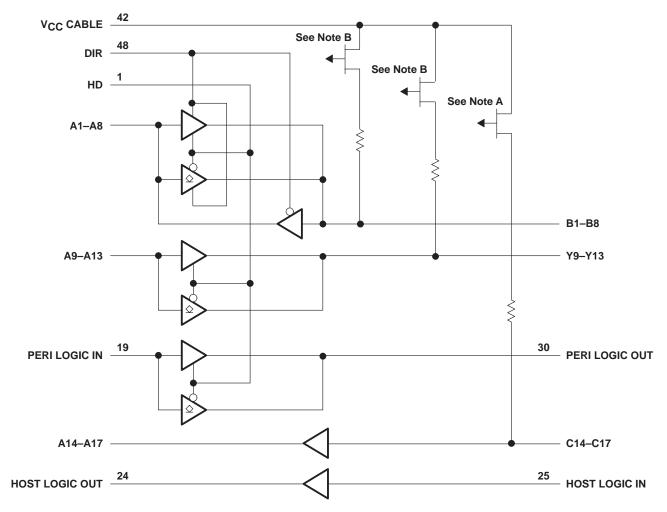
This device has eight bidirectional bits; data can flow in the A-to-B direction when DIR is high, and in the B-to-A direction when DIR is low. This device also has five drivers, which drive the cable side, and four receivers. The SN74LV161284 has one receiver dedicated to the HOST LOGIC line and a driver to drive the PERI LOGIC line.

	or dl p (top vii		(AGE
	1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15	48 47 46 45 44 43 42 41 40 39 38 37 36 35 34	AGE DIR Y9 Y10 Y11 Y12 Y13 V _{CC} CABLE B1 B2 GND B3 B4 B5 B6 GND B7
AA A8 V _{CC} PERI LOGIC IN A14 A15 A16 A17 HOST LOGIC OUT	17 18 19 20 21 22 23	32 31 30 29 28 27	B8 V _{CC} CABLE PERI LOGIC OUT C14 C15 C16 C17 HOST LOGIC IN

The output drive mode is determined by the high-drive (HD) control pin. When HD is high, the B, Y, and PERI LOGIC OUT outputs are in a totem-pole configuration, and in an open-drain configuration when HD is low. This meets the drive requirements as specified in the IEEE Std 1284-I (level-1 type) and IEEE Std 1284-II (level-2 type) parallel peripheral-interface specifications. Except for HOST LOGIC IN and PERI LOGIC OUT, all cable-side pins have a 1.4-k Ω integrated pullup resistor. The pullup resistor is switched off if the associated output driver is in the low state or if the output voltage is above V_{CC} CABLE. If V_{CC} CABLE is off, PERI LOGIC OUT is set to low.

The device has two supply voltages. V_{CC} is designed for 4.5-V to 5.5-V operation. V_{CC} CABLE supplies the output buffers of the cable side only and is designed for 4.5-V to 5.5-V operation. NWW.DZSC.

The SN74LV161284 is characterized for operation from -40°C to 85°C.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCLS426A - OCTOBER 1998 - REVISED FEBRUARY 1999

	FUNCTION TABLE					
INPUTS		OUTPUT	NODE			
DIR	HD	OUTPUT	MODE			
<u> </u>		Open drain	A9–A13 to Y9–Y13 and PERI LOGIC IN to PERI LOGIC OUT			
	L	Totem pole	B1–B8 to A1–A8 and C14–C17 to A14–A17			
L	Н	Totem pole	B1-B8 to A1-A8, A9-A13 to Y9-Y13, PERI LOGIC IN to PERI LOGIC OUT, and C14-C17 to A14-A17			
н		Open drain	A1–A8 to B1–B8, A9–A13 to Y9–Y13, and PERI LOGIC IN to PERI LOGIC OUT			
	L	Totem pole	C14-C17 to A14-A17			
Н	Н	Totem pole	A1-A8 to B1-B8, A9-A13 to Y9-Y13, C14-C17 to A14-A17, and PERI LOGIC IN to PERI LOGIC OUT			

logic diagram (positive logic)

NOTES: A. The PMOS prevents backdriving current from the signal pins to V_{CC} CABLE when V_{CC} CABLE is open or at GND.
B. The PMOS prevents backdriving current from the signal pins to V_{CC} CABLE when V_{CC} CABLE is open or at GND. The PMOS is turned off when the associated driver is in the low state.

SCLS426A - OCTOBER 1998 - REVISED FEBRUARY 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range: V _{CC} CABLE
V_{CC}
Input and output voltage range, V_I and V_O : Cable side (see Notes 1 and 2)
Peripheral side (see Note 1) -0.5 V to V _{CC} + 0.5 VInput clamp current, I _{IK} (VI < 0 or VI > V _{CC}) ± 20 mA
Output clamp current, I_{R} ($V_{Q} < 0$ or $V_{Q} > V_{CC}$)
Continuous output current, $I_O(V_O = 0 \text{ to } V_{CC})$
Continuous current through each V _{CC} or GND ±200 mA
Output high sink current, I_{SK} (V _O = 5.5 V and V _{CC} CABLE = 5.5 V)
Package thermal impedance, θ _{JA} (see Note 3): DGG package
DL package
Storage temperature range, T _{stg}

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The ac input voltage pulse duration is limited to 40 ns if the amplitude is more negative than -0.5 V.

3. The package thermal impedance is calculated in accordance with JESD 51.

			MIN	MAX	UNIT
V _{CC} CABLE	Supply voltage for the cable side, V_{CC}	CABLE \geq V _{CC}	4.5	5.5	V
VCC	Supply voltage		4.5	5.5	V
		A, DIR, HD, and PERI LOGIC IN	$V_{CC} \times 0.7$		
\/	High-level input voltage	В	2		V
VIH	High-level input voltage	C14–C17	2.3		V
		HOST LOGIC IN	2.6		
		A, DIR, HD, and PERI LOGIC IN		$V_{CC} \times 0.3$	
Ma	Low-level input voltage	В		0.8	V
VIL		C14–C17		0.8	
		HOST LOGIC IN		1.6	
VI	Input voltage	Peripheral side	0	VCC	V
		Cable side	0	5.5	V
VO	Open-drain output voltage	B, Y, and PERI LOGIC OUT (HD low)	0	5.5	V
IOH	High-level output current	B and Y outputs (HD high)		-14	mA
		A outputs and HOST LOGIC OUT		-8	
		PERI LOGIC OUT	-0.5		
		B and Y outputs		14	
IOL	Low-level output current	A outputs and HOST LOGIC OUT		8	mA
		PERI LOGIC OUT		84	
ТА	Operating free-air temperature		-40	85	°C

recommended operating conditions (see Note 4)

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCLS426A - OCTOBER 1998 - REVISED FEBRUARY 1999

electrical characteristics over recommended V_{CC} CABLE = V_{CC} (unless otherwise noted) operating free-air temperature range,

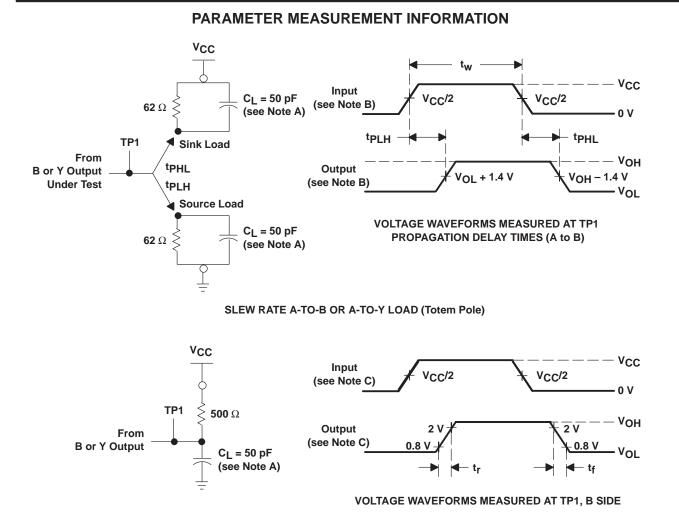
	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP†	MAX	UNIT	
		$V_{thH} - V_{thL}$ for all inputs except the C inputs and HOST LOGIC IN	4.5 V to 5.5 V	0.4				
ΔV_t	Input hysteresis	$V_{thH} - V_{thL}$ for the HOST LOGIC IN	5.1	0.3			V	
		$V_{thH} - V_{thL}$ for the C inputs	5 V	0.8				
VIK	Input clamp diode voltage	I _I = -18 mA	3 V			-1.2	V	
	B and Y outputs	I _{OH} = –14 mA (HD high)		3.73				
V		$I_{OH} = -8 \text{ mA} (\text{HD high})$	4.5 V	3.8				
VOH	A outputs and HOST LOGIC OUT	I _{OH} = -50 μA		4.4			V	
	PERI LOGIC OUT	I _{OH} = -0.5 mA	4.5 V	4.45				
	B and Y outputs	I _{OL} = 14 mA				0.77	V	
\/		I _{OL} = 50 μA	4.5 V			0.1		
VOL	A outputs and HOST LOGIC OUT	I _{OL} = 8 mA	4.5 V			0.44		
	PERI LOGIC OUT	I _{OL} = 84 mA	7			0.7		
		V _I = V _{CC}				350	μΑ	
1.	C inputs	VI = GND (pullup resistors)	5.5 V			-5	mA	
łį	B and C inputs	V _I = 5.5 V or GND	0 to 5.5 V			±5	mA	
	All inputs except the B or C inputs	$V_{I} = V_{CC} \text{ or } GND$	5.5 V			±1	μΑ	
		VO = VCC	5.5 V	350		μA		
	B outputs	V _O = GND (pullup resistors)	5.5 V			-5	mA	
IOZ	A1–A8	$V_{O} = V_{CC}$ or GND	5.5 V			±20	μΑ	
	Open-drain Y outputs	V _O = GND (pullup resistors)	5.5 V			-5	mA	
1		V _O = 5.5 V	0 to 2 1/			350	μΑ	
IOZPU	B and Y outputs	V _O = GND	0 to 2 V			-5	mA	
1		V _O = 5.5 V	2)/ to 0			350	μΑ	
IOZPD	B and Y outputs	V _O = GND	2 V to 0			-5	mA	
l _{off}	Power-down output leakage, Outputs B1 – B8, Y9 – Y13, and PERI LOGIC OUT	V _O = 5.5 V				100		
	Power-down input leakage, Inputs C14 – C17 and HOST LOGIC IN	V _I = 5.5 V	0			100	μA	
+		$V_{I} = V_{CC}, \qquad I_{O} = 0$	E E V			0.8	pro A	
ICC‡		$V_I = GND (12 \times pullup)$	5.5 V			70	mA	
Ci	All inputs	$V_I = V_{CC}$ or GND	5 V		5		pF	
Cio	I/O ports	$V_{O} = V_{CC}$ or GND	5 V		9		pF	
ZO	Cable side	I _{OH} = -35 mA	5 V		45		Ω	
R pullup	Cable side	V _O = 0 V (in Hi Z)	5 V	1.15		1.65	kΩ	

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. [‡] A maximum current of 170 μ A per pin is added to I_{CC} if the pullup resistor pin is above V_{CC}.

SCLS426A - OCTOBER 1998 - REVISED FEBRUARY 1999

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figures 1 and 2)

PA	RAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	ΤΥΡ ΜΑΧ	UNIT
^t PLH	Totem pole	A or B	B or A	2	30	ns
^t PHL	loteni pole	AOIB	BOTA	2	30	115
^t PLH	Totem pole	A	Y	2	30	ns
^t PHL	Totern pole		Ý	2	30	
^t PLH	Totom nolo	ĉ	A	2	30	ns
^t PHL	Totem pole	С		2	30	
^t PLH	Totom nolo		PERI LOGIC OUT	2	30	ns
^t PHL	Totem pole	PERI LOGIC IN		2	30	
^t PLH	Totem pole	HOST LOGIC IN HOST LOGIC OUT		2	30	ns
^t PHL		HOST LOGIC IN	HOST LOGIC OUT	2	30	
tslew	Totem pole	Cable-side outputs		0.05	0.95	V/ns
t _{en}	Totem pole	HD	B, Y, and PERI LOGIC OUT	2	25	ns
^t dis	Totem pole	HD	B, Y, and PERI LOGIC OUT	2	25	ns
^t en ^{-t} dis					10	ns
t _{en}		DIR	А	2	25	ns
^t dis			A	2 15		
		DIR	В	2	25	ns
t _r , t _f	Open drain	A	B or Y		30	ns
^t sk(o)		A or B	B or A		1 6	ns

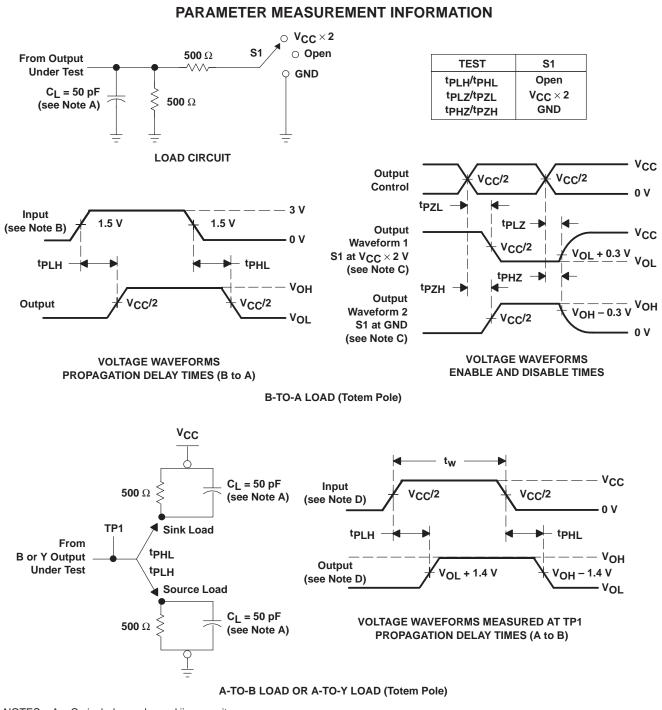

[†] Skew is measured at 1/2 (V_{OH} + V_{OL}) for signals switching in the same direction.

operating characteristics, V_{CC} = 5 V, T_A = 25° C

PARAMETER			TEST CO	ONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance	Outputs enabled	C _L = 0,	f = 10 MHz	25	pF

SCLS426A - OCTOBER 1998 - REVISED FEBRUARY 1999

A-TO-B LOAD OR A-TO-Y LOAD (Open Drain)


NOTES: A. CL includes probe and jig capacitance.

- B. Input rise and fall times are 3 ns, 150 ns < pulse duration < 10 μs for both low-to-high and high-to-low transitions. Slew rate is measured between 0.4 V and 1.9 V for the rising edge and between 95% V_{CC} and 50% V_{CC} for the falling edge.
- C. Input rise and fall times are 3 ns. Rise and fall times (open drain) < 120 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

SCLS426A - OCTOBER 1998 - REVISED FEBRUARY 1999

NOTES: A. CL includes probe and jig capacitance.

- B. Input rise and fall times are 3 ns.
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. Input rise and fall times are 3 ns, 150 ns < pulse duration < 10 μ s for both low-to-high and high-to-low transitions.
- E. The outputs are measured one at a time with one transition per measurement.
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated