
SCLS428B - MAY 1999 - REVISED JUNE 2000

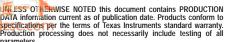
- EPIC™ (Enhanced-Performance Implanted CMOS) Process
- 2-V to 5.5-V V_{CC} Operation
- Support Mixed-Mode Voltage Operation on All Ports
- High On-Off Output-Voltage Ratio
- Low Crosstalk Between Switches
- Individual Switch Controls
- Extremely Low Input Current
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Package Options Include Plastic Small-Outline (D, NS), Shrink Small-Outline (DB), Thin Very Small-Outline (DGV), Thin Shrink Small-Outline (PW), Ceramic Flat (W) Packages, and Standard Plastic (N) and Ceramic (J) DIPs

SN54LV4051A . . . J OR W PACKAGE SN74LV4051A . . . D, DB, DGV, N, NS, OR PW PACKAGE (TOP VIEW)

description

These 8-channel CMOS analog multiplexers/demultiplexers are designed for 2-V to 5.5-V V_{CC} operation.

The 'LV4051A devices handle both analog and digital signals. Each channel permits signals with amplitudes up to 5.5 V (peak) to be transmitted in either direction.

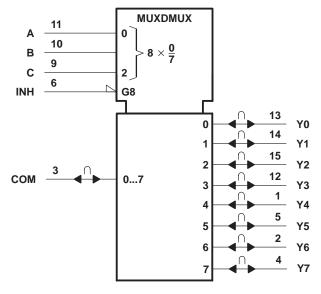

Applications include signal gating, chopping, modulation or demodulation (modem), and signal multiplexing for analog-to-digital and digital-to-analog conversion systems.

The SN54LV4051A is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74LV4051A is characterized for operation from –40°C to 85°C.

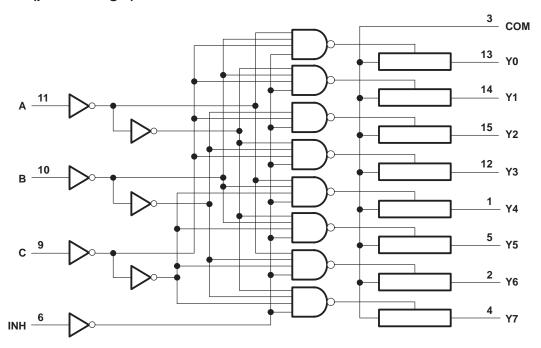
FUNCTION TABLE

	INPU	JTS		ON
INH	С	В	Α	CHANNEL
L	L	L	L	Y0
L	L	L	Н	Y1
L	L	Н	L	Y2
L	L	Н	Н	Y3
L	Н	L	L	Y4
LL	Н	L	Н	Y5
GIC-	Н	Н	L	Y6
L	Н	Н	Н	Y7
Н	Χ	Χ	Χ	None

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



is a trademark of Texas Instruments


SCLS428B - MAY 1999 - REVISED JUNE 2000

logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

SCLS428B - MAY 1999 - REVISED JUNE 2000

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}		
Input voltage range, V _I (see Note 1)		–0.5 V to 7.0 V
Switch I/O voltage range, V _{IO} (see Notes 1 and	d 2)	\dots -0.5 V to V _{CC} + 0.5 V
Input clamp current, I_{IK} ($V_I < 0$)		–20 mA
I/O diode current, I _{IOK} (V _{IO} < 0 or V _{IO} > V _{CC})		±50 mA
Switch through current, $I_T (V_{IO} = 0 \text{ to } V_{CC})$		±25 mA
Continuous current through V _{CC} or GND		±50 mA
Package thermal impedance, θ _{JA} (see Note 3)	: D package	73°C/W
	DB package	82°C/W
	DGV package	120°C/W
	N package	67°C/W
	NS package	64°C/W
	PW package	108°C/W
Storage temperature range, T _{sto}		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. This value is limited to 5.5 V maximum.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

			SN54LV4051A		SN74L			
			MIN	MAX	MIN	MAX	UNIT	
Vсс	Supply voltage		2 [‡]	5.5	2‡	5.5	V	
		V _{CC} = 2 V	1.5		1.5			
V	High-level input voltage,	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	$V_{CC} \times 0.7$		$V_{CC} \times 0.7$		V	
VIH	control inputs	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$	$V_{CC} \times 0.7$		$V_{CC} \times 0.7$		V	
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	$V_{CC} \times 0.7$	N.	$V_{CC} \times 0.7$			
		V _{CC} = 2 V		0.5		0.5		
\ \/	Low-level input voltage,	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		$V_{CC} \times 0.3$		$V_{CC} \times 0.3$	\ \ \	
VIL	control inputs	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$, A	$V_{CC} \times 0.3$		$V_{CC} \times 0.3$	V	
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	MIN MAX MIN MAX MAX MAX 2‡ 5.5 2‡ 5.5 N MAX MIN MA					
٧ı	Control input voltage		0	5.5	0	5.5	V	
۷ıO	Input/output voltage		0	Vcc	0	Vcc	V	
		V _{CC} = 2.3 V to 2.7 V	0	200	0	200		
Δt/Δν	Input transition rise or fall rate	V _{CC} = 3 V to 3.6 V	0	100	0	100	ns/V	
$ V_{\text{IL}} = \begin{array}{c} V_{\text{CC}} = 2 \ \text{V} \\ V_{\text{CC}} = 2.3 \ \text{V to } 2.7 \ \text{V} \\ V_{\text{CC}} = 3.3 \ \text{V to } 3.6 \ \text{V} \\ V_{\text{CC}} = 3.3 \ \text{V to } 3.6 \ \text{V} \\ V_{\text{CC}} = 4.5 \ \text{V to } 5.5 \ \text{V} \\ V_{\text{CC}} = 4.5 \ \text{V to } 5.5 \ \text{V} \\ V_{\text{CC}} = 2.3 \ \text{V to } 2.7 \ \text{V} \\ V_{$	20							
T _A	Operating free-air temperature		-55	125	-40	85	°C	

With supply voltages at or near 2 V, the analog switch on-state resistance becomes very nonlinear. It is recommended that only digital signals be transmitted at these low supply voltages.

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to TI application report *Implications* of Slow or Floating CMOS Inputs, literature number SCBA004.

SCLS428B - MAY 1999 - REVISED JUNE 2000

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST	,,	T	չ = 25°C	;	SN54LV	4051A	SN74LV4051A		UNIT
	FARAINETER	CONDITIONS	vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
	•	$I_T = 2 \text{ mA},$	2.3 V		38	180		225		225	
Ron	On-state switch resistance	V _I = V _{CC} or GND, V _{INH} = V _{IL}	3 V		30	150		190		190	Ω
		(see Figure 1)	4.5 V		22	75		100		100	
		$I_T = 2 \text{ mA},$	2.3 V		113	500		600		600	
R _{on(p)}	Peak on-state resistance	$V_I = V_{CC}$ to GND,	3 V		54	180		225		225	Ω
		VINH = VIL	4.5 V		31	100		125		125	
	Difference in	I _T = 2 mA,	2.3 V		2.1	30		40		40	
ΔR_{on}	on-state resistance	$V_I = V_{CC}$ to GND,	3 V		1.4	20		30		30	Ω
	between switches	V _{INH} = V _{IL}	4.5 V		1.3	15		20		20	
IĮ	Control input current	$V_I = V_{CC}$ or GND	0 V to 5.5 V			±0.1		±1		±1	μΑ
I _{soff}	Off-state switch leakage current	$V_I = V_{CC}$ and $V_O = GND$, or $V_I = GND$ and $V_O = V_{CC}$, $V_{INH} = V_{IH}$ (see Figure 2)	5.5V			±0.1	PRODUCE	±1		±1	μΑ
I _{son}	On-state switch leakage current	V _I = V _{CC} or GND, V _{INH} = V _{IL} (see Figure 3)	5.5 V			±0.1		±1		±1	μΑ
Icc	Supply current	$V_I = V_{CC}$ or GND	5.5 V					20		20	μΑ
C _{IC}	Control input capacitance	f = 10 MHz	3.3 V		2						pF
CIS	Common terminal capacitance		3.3 V		23.4						pF
COS	Switch terminal capacitance		3.3 V		5.7						pF
CT	Feedthrough capacitance		3.3 V		0.5						pF

switching characteristics over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted)

DAD	RAMETER	FROM	то	TEST	TEST T _A = 25°C SN54LV4051A		SN74LV	4051A	UNIT		
FAN	KAWETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP	MAX	MIN MAX	MIN	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay time	COM or Yn	Yn or COM	C _L = 15 pF, (see Figure 4)		1.9	10	16		16	ns
tPZH, tPZL	Enable delay time	INH	COM or Yn	C _L = 15 pF, (see Figure 5)		6.6	18	23		23	ns
tPHZ, tPLZ	Disable delay time	INH	COM or Yn	C _L = 15 pF, (see Figure 5)		7.4	18	23		23	ns
tPLH, tPHL	Propagation delay time	COM or Yn	Yn or COM	C _L = 50 pF, (see Figure 5)		3.8	12	18		18	ns
tPZH, tPZL	Enable delay time	INH	COM or Yn	C _L = 50 pF, (see Figure 5)		7.8	28	35		35	ns
^t PHZ [,] ^t PLZ	Disable delay time	INH	COM or Yn	C _L = 50 pF, (see Figure 5)		11.5	28	35		35	ns

SCLS428B - MAY 1999 - REVISED JUNE 2000

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted)

DAR	RAMETER	FROM	то	TEST	T,	ղ = 25°C	;	SN54LV	N54LV4051A SN74LV405		4051A	UNIT
FAR	KAWIETEK	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
tPLH, tPHL	Propagation delay time	COM or Yn	Yn or COM	C _L = 15 pF, (see Figure 4)		1.2	6		10		10	ns
^t PZH [,] ^t PZL	Enable delay time	INH	COM or Yn	C _L = 15 pF, (see Figure 5)		4.7	12		15		15	ns
^t PHZ [,] ^t PLZ	Disable delay time	INH	COM or Yn	C _L = 15 pF, (see Figure 5)		5.7	12	4	15		15	ns
t _{PLH} , t _{PHL}	Propagation delay time	COM or Yn	Yn or COM	C _L = 50 pF, (see Figure 4)		2.5	9	Snac	12		12	ns
tPZH, tPZL	Enable delay time	INH	COM or Yn	C _L = 50 pF, (see Figure 5)		5.5	20	Hd.	25		25	ns
tPHZ, tPLZ	Disable delay time	INH	COM or Yn	C _L = 50 pF, (see Figure 5)		8.8	20		25		25	ns

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted)

DAD	PARAMETER FROM		то	TEST	T _A = 25°C			SN54LV4051A		SN74LV4051A		UNIT
PAR	RAMETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP	MAX	MIN I	VIAX	MIN	MAX	UNII
tPLH, tPHL	Propagation delay time	COM or Yn	Yn or COM	C _L = 15 pF, (see Figure 4)		0.6	4		7		7	ns
^t PZH [,] ^t PZL	Enable delay time	INH	COM or Yn	C _L = 15 pF, (see Figure 5)		3.5	8		10		10	ns
^t PHZ [,] ^t PLZ	Disable delay time	INH	COM or Yn	C _L = 15 pF, (see Figure 5)		4.4	8	"da	10		10	ns
^t PLH [,] ^t PHL	Propagation delay time	COM or Yn	Yn or COM	C _L = 50 pF, (see Figure 4)		1.5	6	Ongo	8		8	ns
^t PZH [,] ^t PZL	Enable delay time	INH	COM or Yn	C _L = 50 pF, (see Figure 5)		4	14	Hd.	18		18	ns
^t PHZ [,] ^t PLZ	Disable delay time	INH	COM or Yn	C _L = 50 pF, (see Figure 5)		6.2	14		18		18	ns

SCLS428B - MAY 1999 - REVISED JUNE 2000

analog switch characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM	то	TEST COL	TEST CONDITIONS		T _A = 25°C			UNIT
PARAMETER	(INPUT)	(OUTPUT)	1231 CO	NDITIONS	VCC	MIN	TYP	MAX	UNIT
			$C_L = 50 \text{ pF},$		2.3 V		20		
Frequency response (switch on)	COM or Yn	Yn or COM	R_L = 600 Ω, f_{in} = 1 MHz (sin	e wave)	3 V		25		MHz
(*)			(see Note 5 and Figure 6)		4.5 V		35		
	INH		$C_L = 50 pF$,		2.3 V		20		
Crosstalk (control input to signal output)		COM or Yn	$R_L = 600 \Omega$, $f_{in} = 1 MHz$ (square wave)		3 V		35		mV
			(see Figure 7)	4.5 V		60			
			C _L = 50 pF,) pF,			-45		dB
Feed-through attenuation (switch off)	COM or Yn	Yn or COM	$R_L = 600 \Omega$, $f_{in} = 1 MHz$		3 V		-45		
(eumen em)			(see Note 6 and	l Figure 8)	4.5 V		-45		
		Yn or COM	C _L = 50 pF,	V _I = 2 V _{p-p}	2.3 V		0.1		
Sine-wave distortion	COM or Yn			V _I = 2.5 V _{p-p}	3 V		0.1		
			(sine wave) (see Figure 9)	V _I = 4 V _{p-p}	4.5 V		0.1		

NOTES: 5. Adjust f_{in} voltage to obtain 0-dBm output. Increase f_{in} frequency until dB meter reads –3 dB.

6. Adjust fin voltage to obtain 0-dBm input.

operating characteristics, V_{CC} = 3.3 V, T_A = 25°C

PARA	AMETER	TEST COI	TEST CONDITIONS		
C _{pd} Power dissipation capacitance		$C_L = 50 \text{ pF},$	f = 10 MHz	5.9	pF

PARAMETER MEASUREMENT INFORMATION

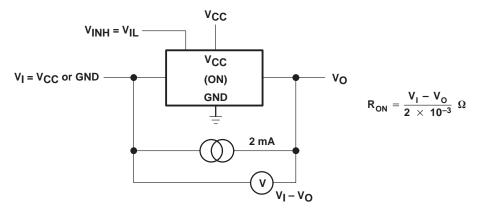
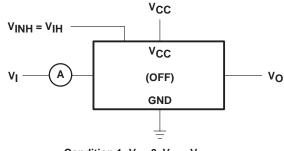



Figure 1. On-State Resistance Test Circuit

PARAMETER MEASUREMENT INFORMATION

Condition 1: $V_I = 0$, $V_O = V_{CC}$ Condition 2: $V_I = V_{CC}$, $V_O = 0$

Figure 2. Off-State Switch Leakage-Current Test Circuit

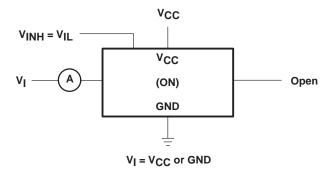


Figure 3. On-State Switch Leakage-Current Test Circuit

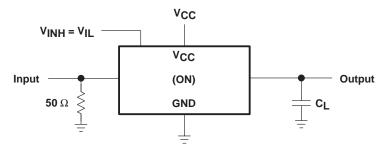


Figure 4. Propagation Delay Time, Signal Input to Signal Output

PARAMETER MEASUREMENT INFORMATION

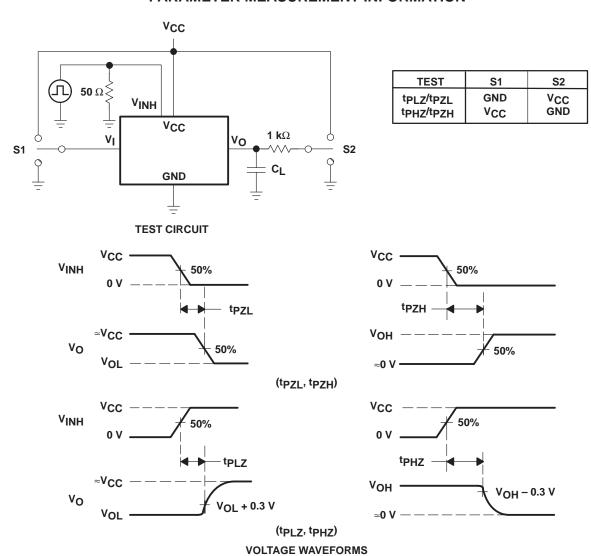


Figure 5. Switching Time (t_{PZL} , t_{PLZ} , t_{PZH} , t_{PHZ}), Control to Signal Output

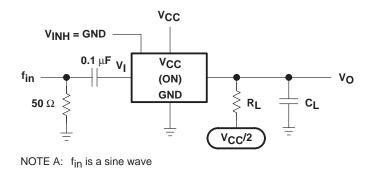


Figure 6. Frequency Response (Switch On)

PARAMETER MEASUREMENT INFORMATION

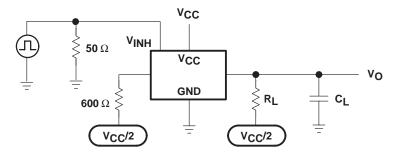


Figure 7. Crosstalk (Control Input, Switch Output)

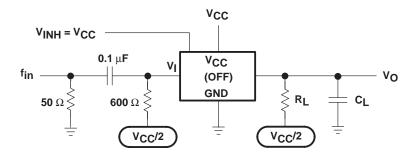


Figure 8. Feedthrough Attenuation (Switch Off)

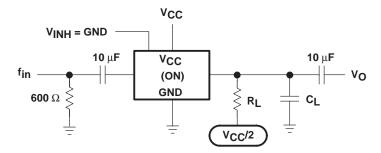


Figure 9. Sine-Wave Distortion

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated