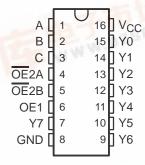
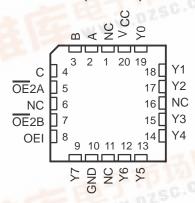
SDAS055C - APRIL 1982 - REVISED FEBRUARY 1994

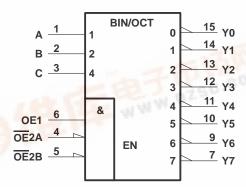

- Designed Specifically for High-Speed
 Memory Decoders and Data Transmission
 Systems
- Incorporates 3 Enable inputs to Simplify Cascading and/or Data Reception
- Package Options include Plastic Small-Outline Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs

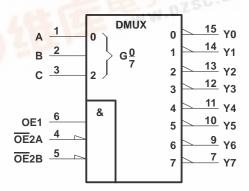
description


The 54ALS138, 74ALS138A, and 'AS138 circuits are designed to be used in high-performance memory-decoding or data-routing applications requiring very short propagation delay times. In high-performance memory systems, this decoder can be used to minimize the effects of system decoding. When employed with high-speed memories with a fast enable circuit, the delay times of this decoder and the enable time of the memory are usually less than the typical access time of the memory. This means that the effective system delay introduced by the Schottky-clamped system decoder is negligible.

The conditions at the binary select inputs and the three enable inputs select one of eight input lines. Two active-low and one active-high enable inputs reduce the need for external gates or inverters when expanding. A 24-line decoder can be implemented without external inverters and a 32-line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.

SN54ALS138, SN54AS138 . . . J PACKAGE SN74ALS138A, SN74AS138 . . . D OR N PACKAGE (TOP VIEW)

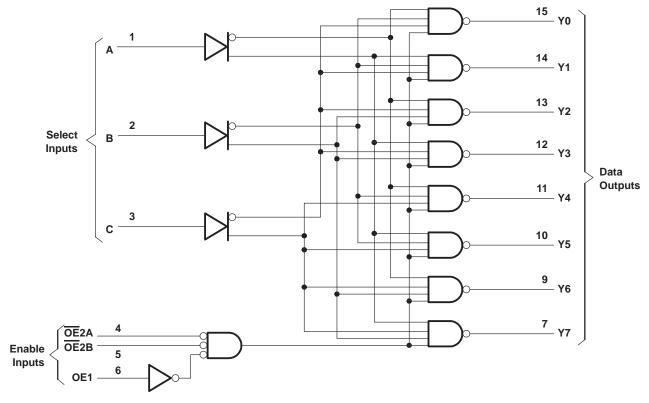

SN54ALS138, SN54AS138 ... FK PACKAGE (TOP VIEW)



NC - No internal connection

The SN54ALS138 and SN54AS138 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALS138A and SN74AS138 are characterized for operation from 0°C to 70°C.

logic symbols (alternatives)†



SN54ALS138, SN54AS138, SN74ALS138A, SN74AS138 3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS

SDAS055C - APRIL 1982 - REVISED FEBRUARY 1994

logic diagram (positive logic)

 \dagger These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the D, J, and N packages.

FUNCTION TABLE

	ENABLE INPUTS			SELECT INPUTS			OUTPUTS						
OE1	OE2A	OE2B	С	В	Α	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Х	Н	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
X	X	Н	Х	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н
L	X	X	Х	X	Χ	н	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н
Н	L	L	L	Н	L	н	Н	L	Н	Н	Н	Н	Н
Н	L	L	L	Н	Н	н	Н	Н	L	Н	Н	Н	Н
Н	L	L	Н	L	L	н	Н	Н	Н	L	Н	Н	Н
Н	L	L	Н	L	Н	н	Н	Н	Н	Н	L	Н	Н
Н	L	L	Н	Н	L	н	Н	Н	Н	Н	Н	L	Н
Н	L	L	Н	Н	Н	н	Н	Н	Н	Н	Н	Н	L

SN54ALS138, SN54AS138, SN74ALS138A, SN74AS138 3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS

SDAS055C - APRIL 1982 - REVISED FEBRUARY 1994

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}		7 V
Input voltage, V _I		7 V
Operating free-air temperature range:	SN54ALS138, SN54AS138	− 55°C to 125°C
	SN74ALS138A, SN74AS138	0°C to 70°C
Storage temperature range		− 65°C to 150°C

recommended operating conditions

		SN54ALS138		SN7	UNIT			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
V _{IH}	High-level input voltage	2			2			V
V_{IL}	Low-level input voltage			0.7			0.8	V
ІОН	High-level output current			-0.4			-0.4	mA
IOL	Low-level output current			4			8	mA
TA	Operating free-air temperature	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED		TEST SOMBITIONS		SN54ALS138			SN74ALS138A			
PARAMETER	TEST CONDITIONS		MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT	
VIK	$V_{CC} = 4.5 \text{ V},$	$I_{I} = -18 \text{ mA}$			-1.5			-1.5	V	
Voн	$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -0.4 \text{ mA}$	V _{CC} -2			V _{CC} -2			V	
Voi	$V_{CC} = 4.5 \text{ V},$	$I_{OL} = 4 \text{ mA}$		0.25	0.4		0.25	0.4	V	
VOL	$V_{CC} = 4.5 \text{ V},$	$I_{OL} = 8 \text{ mA}$					0.35	0.5		
lį	$V_{CC} = 5.5 \text{ V},$	V _I = 7 V			0.1			0.1	mA	
lН	$V_{CC} = 5.5 \text{ V},$	V _I = 2.7 V			20			20	μΑ	
I _{IL}	$V_{CC} = 5.5 \text{ V},$	V _I = 0.4 V			-0.1			-0.1	mA	
1 _O ‡	$V_{CC} = 5.5 \text{ V},$	V _O = 2.25 V	-30		-112	-30		-112	mA	
ICC	V _{CC} = 5.5 V			5	10		5	10	mA	

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	C _L R _L	V_{CC} = 4.5 V to 5.5 V, C_L = 50 pF, R_L = 500 Ω , T_A = MIN to MAX					
			SN54A	LS138	SN74ALS138				
			MIN	MAX	MIN	MAX			
t _{PLH}	A, B, C	Any Y	2	28	5	22	no		
t _{PHL}			6	22	6	18	ns		
^t PLH	Any OE or OE	Any Y	2	22	3	17	ns		
t _{PHL}	Any OE of OE	Ally I	4	21	4	17	115		

NOTE 1: Load circuit and voltage waveforms are shown in Section 1 of ASL/AS Logic Data Book, 1986.

[‡] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, los.

SN54ALS138, SN54AS138, SN74ALS138A, SN74AS138 3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS

SDAS055C - APRIL 1982 - REVISED FEBRUARY 1994

recommended operating conditions

		SN54AS138		SI	UNIT			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
V _{IL}	Low-level input voltage			0.8			0.8	V
loh	High-level output current			-2			-2	mA
loL	Low-level output current			20			20	mA
TA	Operating free-air temperature	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER TEST CONDITIONS		DAIDITIONE	SN	SN54AS138			SN74AS138			
PARAMETER	TEST CONDITIONS		MIN	TYP†	MAX	MIN	TYP	MAX	UNIT	
VIK	V _{CC} = 4.5 V,	$I_{I} = -18 \text{ mA}$			-1.2			-1.2	V	
Voн	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$	$I_{OH} = -2 \text{ mA}$	V _{CC} -2			V _{CC} -2			V	
VOL	V _{CC} = 4.5 V,	$I_{OL} = 20 \text{ mA}$		0.35	0.5		0.35	0.5	V	
lį	$V_{CC} = 5.5 \text{ V},$	V _I = 7 V			0.1			0.1	mA	
lιΗ	$V_{CC} = 5.5 \text{ V},$	$V_{I} = 2.7 V$			20			20	μΑ	
Ι _Ι Γ	$V_{CC} = 5.5 \text{ V},$	$V_{I} = 0.4 V$			-0.5			-0.5	mA	
1 ₀ ‡	$V_{CC} = 5.5 \text{ V},$	V _O = 2.25 V	-30		-112	-30		- 112	mA	
ІССН	V _{CC} = 5.5 V	·		12	17.5		12	17.5	mA	
ICCL	V _{CC} = 5.5 V			14	20		14	20	mA	

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54A	UNIT			
			MIN	MAX	SN74A MIN	MAX	
t _{PLH}	A, B, C	Anux	2	11	2	10	
t _{PHL}		Any Y	2	11	2	9.5	ns
t _{PLH}	OE1	Any Y	2	11.5	2	10	no
t _{PHL}			2	11	2	10	ns
^t PLH	OE2	Any Y	2	9	2	7.5	ns
t _{PHL}	OE2	Ally I	2	10	2	8.5	115

NOTE 1: Load circuit and voltage waveforms are shown in Section 1.

[‡] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, los.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated