SDAS226A - DECEMBER 1982 - REVISED JANUARY 1995

- Local Bus-Latch Capability
- Choice of True or Inverting Logic
- Package Options Include Plastic Small-Outline (DW) Packages and Standard Plastic (N) 300-mil DIPs

DEVICE	OUTPUT	LOGIC
SN74ALS620A	3 state	Inverting
SN74ALS621A	Open collector	True
SN74ALS623A, SN74AS623	3 state	True

(TOP VIEW) OEAB [A1 [OEBA 18 B1 A2 A3 [■ B2 16 B3 A4 [15 N B4 А5 П ∏ B5 П в6 Α7 8 13 8A 9 П в7 12 ∏ B8 GND [] 10 11

DW OR N PACKAGE

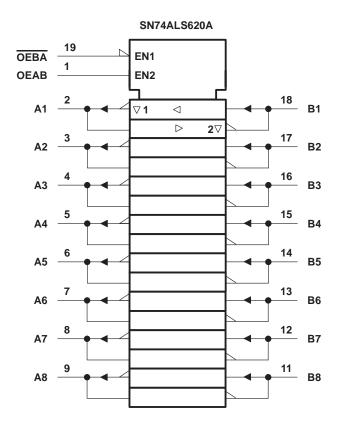
description

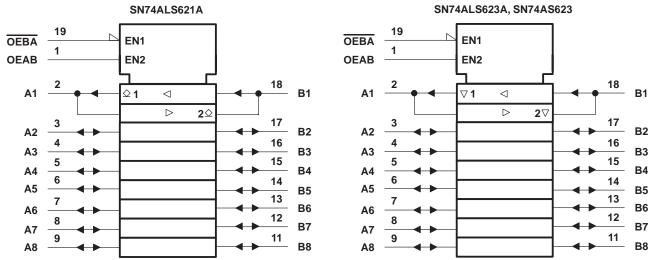
These octal bus transceivers are designed for asynchronous two-way communication between data buses. The control-function implementation allows for maximum flexibility in timing.

These devices allow data transmission from the A bus to the B bus or from the B bus to the A bus, depending upon the logic levels at the output-enable (OEAB and OEBA) inputs.

The output-enable inputs disable the device so that the buses are effectively isolated. The dual-enable configuration gives the transceivers the capability to store data by simultaneously enabling OEAB and OEBA. Each output reinforces its input in this transceiver configuration. When both OEAB and OEBA are enabled and all other data sources to the two sets of bus lines are in the high-impedance state, both sets of bus lines (16 total) remain at their last states. The 8-bit codes appearing on the two sets of buses are identical for the SN74ALS621A, SN74ALS623A, and SN74AS623 or complementary for the SN74ALS620A.

The -1 versions of the SN74ALS620A and SN74ALS621A are identical to the standard versions, except that the recommended maximum I_{OL} is increased to 48 mA in the -1 versions.

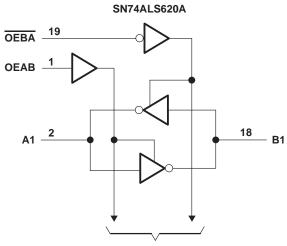

The SN74ALS620A, SN74ALS621A, SN74ALS623A, and SN74AS623 are characterized for operation from 0°C to 70°C.

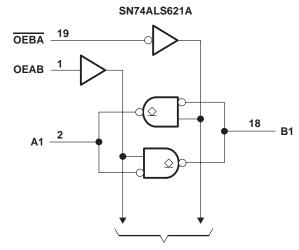

FUNCTION TABLE

INP	UTS	OPERATION				
OEBA OEAB		SN74ALS620A	SN74ALS621A SN74ALS623A SN74AS623			
L	L	B data to A bus	B data to A bus			
Н	Н	A data to B bus	A data to B bus			
Н	L	Isolation	Isolation			
L	Н	B data to A bus, A data to B bus	B data to A bus, A data to B bus			

SDAS226A - DECEMBER 1982 - REVISED JANUARY 1995

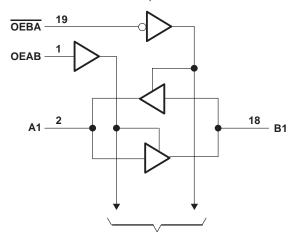
logic symbols†




[†] These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SDAS226A - DECEMBER 1982 - REVISED JANUARY 1995

logic diagrams (positive logic)



To Seven Other Transceivers

To Seven Other Transceivers

SN74ALS623A, SN74AS623

To Seven Other Transceivers

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}	7 V
Input voltage, V _I : All inputs	7 V
I/O ports	
Operating free-air temperature range, T _A : SN74ALS620A, SN74ALS623A 0°C to	io 70°C
Storage temperature range –65°C to	150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

SDAS226A - DECEMBER 1982 - REVISED JANUARY 1995

recommended operating conditions

		_	SN74ALS620A SN74ALS623A		UNIT
		MIN	NOM	MAX	
Vcc	Supply voltage	4.5	5	5.5	V
٧ _{IH}	High-level input voltage	2			V
V_{IL}	Low-level input voltage			0.8	V
IOH	High-level output current			-15	mA
lOL	Low-level output current			24	mA
TA	Operating free-air temperature	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN74ALS620A SN74ALS623A		-	UNIT
				MIN	TYP†	MAX	
٧ıK		$V_{CC} = 4.5 V,$	$I_{I} = -18 \text{ mA}$			-1.2	V
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$	$I_{OH} = -0.4 \text{ mA}$	V _{CC} -2	2		
Vон	$V_{CC} = 4.5 \text{ V}$	2.4	3.2		V		
		∨CC = 4.5 ∨	$I_{OH} = -15 \text{ mA}$	2			
V		V45V	I _{OL} = 12 mA		0.25	0.4	V
VOL		$V_{CC} = 4.5 \text{ V}$	I _{OL} = 24 mA [‡]		0.35	0.5	V
1.	Control inputs	V 55V	V _I = 7 V			0.1 0.1	mA
ΙΙ	A or B ports	$V_{CC} = 5.5 V$	V _I = 5.5 V				mA
1	Control inputs	V 55V	\/. 07\/			20	μΑ
lіН	A or B ports§	$V_{CC} = 5.5 \text{ V},$	V _I = 2.7 V			20	
l	Control inputs	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\/ 0.4.\/			-0.1	mA
IIL	A or B ports§	$V_{CC} = 5.5 \text{ V},$	V _I = 0.4 V			-0.1	mA
IO¶		$V_{CC} = 5.5 V,$	V _O = 2.25 V	-30		-112	mA
			Outputs high		24	34	
	SN74ALS620A	$V_{CC} = 5.5 V$	Outputs low		31	44	
ICC			Outputs disabled		33	47	mA
			Outputs high		32	43	l ma
	SN74ALS623A	$V_{CC} = 5.5 V$	Outputs low		39	50	
			Outputs disabled		42	55	

 $^{^\}dagger$ All typical values are at VCC = 5 V, TA = 25°C. ‡ Applies only to the -1 version and only if VCC is between 4.75 V and 5.25 V

[§] For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current.

The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, los.

SDAS226A - DECEMBER 1982 - REVISED JANUARY 1995

switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	C _L R1 R2	= 50 pF = 500 £ 2 = 500 £	2,	,	UNIT
			SN74AL	S620A	SN74AL	S623A	1
			MIN	MAX	MIN	MAX	
^t PLH	А		2	10	2	13	ns
t _{PHL}	A	В	2	10	3	11	115
t _{PLH}	В		2	10	2	13	ns
t _{PHL}		А	2	10	3	11	115
^t PZH	 OEBA	Δ.	3	17	5	22	ns
t _{PZL}	OEBA	А	5	25	5	22	115
^t PHZ	 OEBA	Δ.	2	12	2	16	ns
^t PLZ	OEBA	А	3	18	2	19	115
^t PZH	OFAR	В	3	18	5	22	ns
^t PZL	OEAB	В	5	25	5	22	115
^t PHZ	OEAB	В	2	12	2	16	ns
^t PLZ	OLAD	J	3	18	2	19	115

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply voltage, V _{CC}		7 V
Input voltage, V _I : All inputs and I/O ports		$\dots \dots \dots \ 7 \ V$
Operating free-air temperature range, TA:	SN74ALS621A	0°C to 70°C
Storage temperature range		-65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

		SN74ALS621A		UNIT	
		MIN	NOM	MAX	UNII
VCC	Supply voltage	4.5	5	5.5	V
VIH	High-level input voltage	2			V
V_{IL}	Low-level input voltage			0.8	V
Vон	High-level output voltage			5.5	V
la.	Low lovel output outropt			24	mA
lor	Low-level output current			48§	mA
TA	Operating free-air temperature	0		70	°C

 $[\]$ Applies only to the -1 version and only if VCC is between 4.75 V and 5.25 V

SDAS226A - DECEMBER 1982 - REVISED JANUARY 1995

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	DADAMETED	TEST 00	NDITIONS	SN	74ALS62	1A	LINUT
	PARAMETER	lesi co	ONDITIONS	MIN	TYP†	MAX	UNIT
٧ıK		$V_{CC} = 4.5 \text{ V},$	$I_{I} = -18 \text{ mA}$			-1.5	V
IOH		$V_{CC} = 4.5 \text{ V},$	V _{OH} = 5.5 V			0.1	mA
\/a.		\/00 = 15 \/	I _{OL} = 24 mA		0.35	0.5	V
VOL			I _{OL} = 48 mA [‡]		0.35	0.5	V
1.	Control inputs	V 55V	V _I = 7 V			0.1	A
l II	A or B ports	V _{CC} = 5.5 V	V _I = 5.5 V			0.1	mA
1	Control inputs	V 55V	V- 0.7.V			20	
lіН	A or B ports§	V _{CC} = 5.5 V,	V _I = 2.7 V			20	μΑ
ΊL	Control inputs	V 55V				-0.1	A
	A or B ports§	$V_{CC} = 5.5 \text{ V},$	$V_{ } = 0.4 V$			-0.1	mA
	-	V 55V	Outputs high		29	40	mA
ICC		V _{CC} = 5.5 V	Outputs low		35	48	IIIA

switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$; 0, 0 MAX¶ _S621A	UNIT
			MIN	MAX	
t _{PLH}	Δ	В	10	33	ns
t _{PHL}	A	Ь	5	20	113
t _{PLH}	В		10	33	ns
^t PHL	ם	A	5	20	115
^t PLH	<u> </u>		10	39	
^t PHL	OEBA	А	12	35	ns
t _{PLH}	OEAB	В	10	39	
^t PHL	OEAB	В	12	35	ns

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[†] All typical values are at $V_{CC} = 5$ V, $T_A = 25^{\circ}$ C. ‡ Applies only to the -1 version and only if V_{CC} is between 4.75 V and 5.25 V § For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current.

SDAS226A - DECEMBER 1982 - REVISED JANUARY 1995

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC}	7 V
Input voltage, V _I : All inputs	7 V
I/O ports	5.5 V
Operating free-air temperature range, T _A : SN74AS623	0°C to 70°C
Storage temperature range	

recommended operating conditions

		SI	SN74AS623		UNIT
		MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	V
VIH	High-level input voltage	2			V
V _{IL}	Low-level input voltage			0.8	V
ІОН	High-level output current			-15	mA
l _{OL}	Low-level output current			64	mA
TA	Operating free-air temperature	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

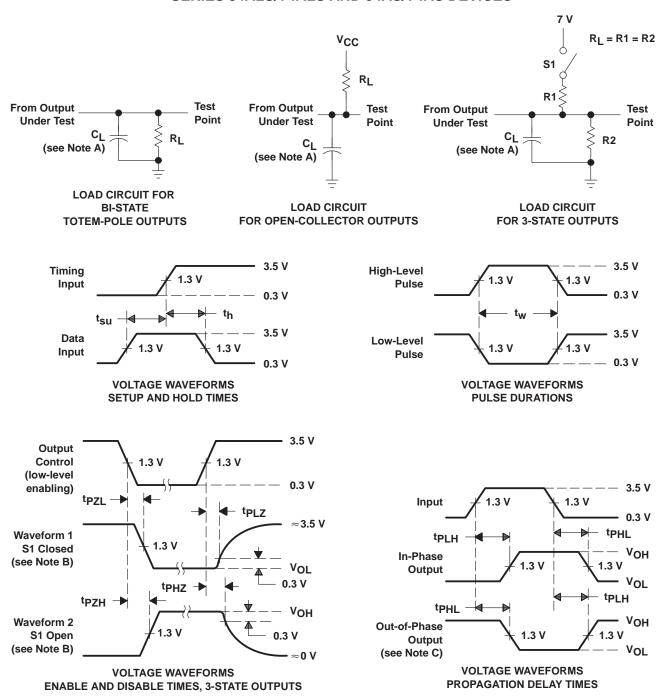
PARAMETER		TEST CONDITIONS		SN	SN74AS623		
		TEST CONDITIONS			TYP‡	MAX	UNIT
٧ıĸ		V _{CC} = 4.5 V,	I _I = -18 mA			-1.2	V
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$	I _{OH} = −2 mA	V _{CC} -2			
VOH		V _{CC} = 4.5 V	$I_{OH} = -3 \text{ mA}$	2.4	3.2		V
			I _{OH} = -15 mA	2			
VOL		$V_{CC} = 4.5 V,$	I _{OL} = 64 mA		0.35	0.55	V
l _l	Control inputs	V _{CC} = 5.5 V	V _I = 7 V			0.1	mA
	A or B ports		V _I = 5.5 V			0.1	
ΊΗ	Control inputs	V _{CC} = 5.5 V,	V _I = 2.7 V			20	μΑ
	A or B ports§					70	
ΊL	Control inputs	V _{CC} = 5.5 V,	V _I = 0.4 V			-0.5	mA
	A or B ports§					-0.75	
Io¶		V _{CC} = 5.5 V,	V _O = 2.25 V	-30		-150	mA
		V _{CC} = 5.5 V	Outputs high		57	93	mA
Icc			Outputs low		16	189	
			Outputs disabled		71	116	

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

[§] For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current.

The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.


SDAS226A - DECEMBER 1982 - REVISED JANUARY 1995

switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 4.5$ $^{\circ}$	UNIT	
			MIN	MAX]
^t PLH	А	В	1	9	ns
^t PHL			1	8	
^t PLH	В	А	1	9	ns
^t PHL			1	8.5	
^t PZH	- OEBA	А	2	11	ns
^t PZL			2	10	
^t PHZ	OFD.	А	1	7.5	ns
t _{PLZ}	OEBA		1	11.5	
^t PZH	OEAB	В	2	11.5	ns
t _{PZL}			2	11	
[†] PHZ	OEAB	В	1	7	ns
^t PLZ	OEAD		1	9	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

PARAMETER MEASUREMENT INFORMATION SERIES 54ALS/74ALS AND 54AS/74AS DEVICES

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. When measuring propagation delay items of 3-state outputs, switch S1 is open.
- D. All input pulses have the following characteristics: $PRR \le 1$ MHz, $t_r = t_f = 2$ ns, duty cycle = 50%.
- E. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated