捷多邦,专业PCB打样工厂**SAIS4社场266**英SN74LS266 QUADRUPLE 2-INPUT EXCLUSIVE-NOR GATES WITH OPEN-COLLECTOR OUTPUTS

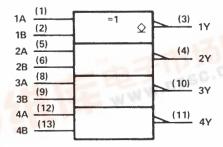
SDLS151 - DECEMBER 1972 - REVISED MARCH 1988

- Can Be Used as a 4-Bit Digital Comparator
- Input Clamping Diodes Simplify System Design
- Fully Compatible with Most TTL Circuits

FUNCTION TABLE

INP	UTS	OUTPUT
Α	В	Y
L	L	Н
L	Н	L
Н	L	L
Н	Н	Н

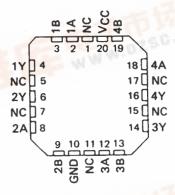
H = high level, L = low level


description

The 'LS266 is comprised of four independent 2-input exclusive-NOR gates with open-collector outputs. The open-collector outputs permit tying outputs together for multiple-bit comparisons.

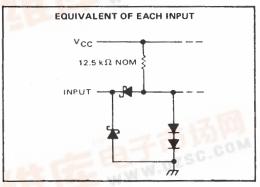
logic symbol (each gate)

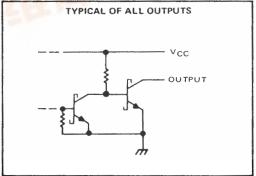
logic symbol[†]


positive logic: $Y = \overline{A \oplus B} = AB + \overline{AB}$

Pin numbers shown are for D, J, N, and W packages.

SN54LS266 . . . J OR W PACKAGE SN74LS266 . . . D OR N PACKAGE (TOP VIEW)


	_	
1A	1	U14 VCC
1B	2	13 4B
1Y C	3	12 34A
2Y [4	11 4Y
2A 🗆	5	10] 3Y
2B [6	9 ∐3B
	7	8 □3A


SN54LS266 ... FK PACKAGE (TOP VIEW)

NC - No internal connection

schematic of inputs and outputs

TEXAS

 $^{^{\}dagger}$ This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

SN54LS266, SN74LS266 QUADRUPLE 2-INPUT EXCLUSIVE-NOR GATES WITH OPEN-COLLECTOR OUTPUTS

SDLS151 – DECEMBER 1972 – REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) .															7 V	
Input voltage															7 V	
Operating free-air temperature range:	SN54LS266		٠,								-Ę	55°	C t	to 1	25°C	;
	SN74LS266											()°C	to	70°C	;
Storage temperature range															150°C	

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

	SI	N54LS2	66	SI	UNIT		
	MIN	NOM	MAX	MIN	NOM	MAX	ONT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	٧
High-level output voltage, VOH			5.5			5.5	٧
Low-level output current, IOL			4			8	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

			SI	N54LS2	66	S	UNIT			
	PARAMETER	TEST CON	IDITIONS	MIN	TYP [‡]	MAX	MIN	TYP‡	MAX	ONT
VIH	High-level input voltage			2			2			٧
VIL	Low-level input voltage					0.7			0.8	V
Vik	Input clamp voltage	V _{CC} = MIN,	I _I = -18 mA			1.5			-1.5	V
ЮН	High-level output current	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, V _{OH} = 5.5 V			100			100	μА
VOL	Low-level output voltage	V _{CC} ≈ MIN, V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4		0.25	0.4	V
VOL	Low-rever output vortage	VIL = VIL max	IOL = 8 mA					0.35	0.5	
l ₁	Input current at maximum input voltage	V _{CC} = MAX,	V ₁ = 7 V			0.2			0.2	mA
ЧН	High-level input current	V _{CC} = MAX,	V ₁ = 2.7 V			40			40	μА
IIL	Low-level input current	VCC = MAX,	V _I = 0.4 V			-0.8			-0.8	mA
1cc	Supply current	V _{CC} = MAX,	See Note 2		8	13		8	13	mA

¹ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. ‡ All typical values are at V_{CC} = 5 V, T_A = 25 °C.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER [§]	FROM (INPUT)	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
^t PLH	A or B	Other input low	CL = 15 pF,		18	30	ns
tPHL	A 01 B	Other input low	$R_L = 2 k\Omega$,		18	30	113
tPLH	A or B	Other input high	See Note 3		18	30	ns
tpHL	A 01 B	Other input high			18	30	

[§]tPLH = propagation delay time, low-to-high-level output

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

NOTE 2: ICC is measured with one input of each gate at 4.5 V, the other inputs grounded, and the outputs open.

tpHL = propagation delay time, high-to-low-level output

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated