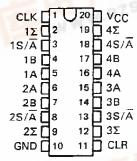
SN54LS385, SN74LS385 QUADRUPLE SERIAL ADDERS/SUBTRACTORS

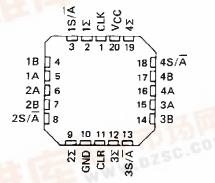
SDLS170

D2412, NOVEMBER 1977 - REVISED MARCH 1988

- Four Synchronous Elements in a Single 20-Pin Package
- Buffered Clock and Direct Clear Inputs
- Independent Two's-Complement Addition/Subtraction


description

The 'LS385 is a general purpose adder/subtractor and is particularly useful as a companion part to the SN54LS384/SN74LS384 serial/parallel two's-complement multiplier. The 'LS385 contains four independent adder/subtractor elements with common clock and clear.


Each of the four independent sum (Σ) outputs reflects its respective A and B input as controlled by the S/ \overline{A} control. When S/ \overline{A} is high the Σ function is A minus B. When S/ \overline{A} is low the Σ function is A plus B.

When low, the clear input asynchronously resets the sum flip-flop low and the carry flip-flop either high in the subtract mode or low in the add mode. The clock is positive-edge triggered and controls the sum and carry flip-flops according to the function table.

SN54LS385 . . . J PACKAGE SN74LS385 . . . DW OR N PACKAGE (TOP VIEW)

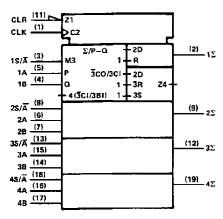
SN54L\$385 ... FK PACKAGE (TOP VIEW)

FUNCTION TABLE

SELECTED	INPUTS					DATA IN CAR	Σουτρυτ	
FUNCTION	CLR	S/Ā	S/A A B		CLK	BEFORE 1	AFTER 1	AFTER 1
Clear	VL.O	L H	X X	X X	×	L H	L H	L L
Add		L L L L			† † † † † †	L H L H L H L H	L L H L H H H	
Subtract	H H H H H H H H	111111	TITITE	ıırrı	† † † † † †	L H L H L H L H	H	111111

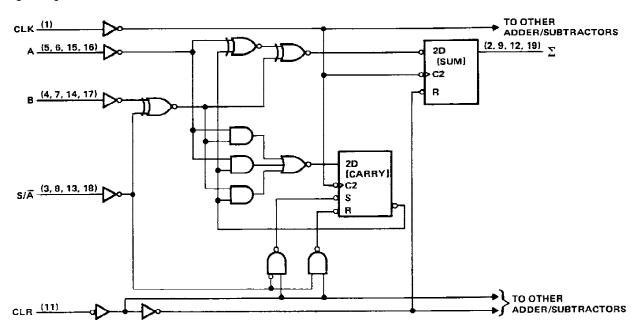
H = high level, L = low level, X = irrelevant,

† = transition from low to high level at the clock input



SN54LS385, SN74LS385 QUADRUPLE SERIAL ADDERS/SUBTRACTORS

schematics of inputs and outputs


EQUIVALENT OF EACH INPUT VCC 18 kΩ NOM INPUT OUTPUT

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

logic diagram (each adder/subtractor, positive logic)

Pin numbers shown are for DW, J, or N packages.

SN54LS385, SN74LS385 QUADRUPLE SERIAL ADDERS/SUBTRACTORS

recommended operating conditions

SN54LS385				SN74LS385		
MIN	NOM	MAX	MIN	NOM	MAX	רומט
4.5	5	5.5	4.75	5	5.25	V
		-400			-400	μΑ
		4			8	mA
0		30	٥		30	MHz
16			16			ns
10			10			ns
3			3			ns
-55		125	0		70	°C
	0 16 10 3	0 16 10 3	MIN NOM MAX 4.5 5 5.5 -400 4 0 30 16 10 3	MIN NOM MAX MIN 4.5 5 5.5 4.75 -400 0 30 0 16 16 16 10 3 3	MIN NOM MAX MIN NOM 4.5 5 5.5 4.75 5 -400 0 30 0 16 16 10 10 3 3	MIN NOM MAX MIN NOM MAX 4.5 5 5.5 4.75 5 5.25 -400 -400 4 8 0 30 0 30 16 16 10 10 3 3

NOTE 1: Voltage values are with respect to network ground terminal.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS†				SN54LS385			SN74LS385		
						TYP‡	MAX	MIN	TYP‡	MAX	UNIT
ViH	High-level input voltage				2	•		2			٧
VIL	Low-level input voltage						0.7			0.8	٧
Vικ	Input clamp voltage	V _{CC} = MIN,	l ₁ = −18 mA				-1.5	_		-1.5	٧
∨он	High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{1H} = 2 V, I _{OH} = -400 μA		2.5	3.5		2.7	3.5		V
VOL	Low-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max	V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4		0.25 0.35	0.4	V
l ₁	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 7 V				0.1			0.1	mA
t _{iH}	High-level input current	V _{CC} = MAX,	V _I = 2.7 V				20			20	μА
1 _L	Low-level input current	V _{CC} = MAX,	V _I = 0.4 V				-0.4	_		-0.4	mA
los	Short-circuit output current§	V _{CC} = MAX	-		-20		-100	-20		-100	mΑ
lcc	Supply current	VCC = MAX,	See Note 2			48	75		48	75	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions,

NOTE 2: ICC is measured with all inputs grounded and all outputs open.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	FROM TO (INPUT)		TEST CO	MIN	TYP	MAX	UNIT	
fmax	····	-		_	30	40		MHz
tPLH	Clock Σ Clear Σ	Σ	C∟ ~ 15 pF, See Note 3	RL ≈ 2 kΩ,	Ĺ	14	22	
tPHL						18	27	ns
tPHL		Σ				18	30	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

 $[\]ddagger$ All typical values are at V_{CC} = 5 V, T_A = 25°C.

Not more than one output should be shorted at a time.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated