2878 AND 2879

QUAD HIGH－CURRENT DARLINGTON SWITCHES

Dwg．No．A－11，974

These quad Darlington arrays are designed to serve as interface between low－level logic and peripheral power devices such as sole－ noids，motors，incandescent displays，heaters，and similar loads of up to 320 W per channel．Both integrated circuits include transient－ suppression diodes that enable use with inductive loads．The input logic is compatible with most TTL，DTL，LSTTL，and 5 V CMOS logic．

Type UDN2878W and UDN2879W 4 A arrays are identical except for output－voltage ratings．The former is rated for operation to 50 V （ 35 V sustaining），while the latter has a minimum output breakdown rating of 80 V （ 50 V sustaining）．The lower－cost UDN2879W－2 is recommended for applications requiring load currents of 3 A or less． These less expensive devices are identical to the basic parts except for the maximum allowable load－current rating．

For maximum power－handling capability，all drivers are supplied in a 12－pin single in－line power－tab package．The tab needs no insulation． External heat sinks are usually required for proper operation of these devices．

FEATURES

■ Output Currents to 4 A
－Output Voltages to 80 V
－Loads to 1280 W
－TTL，DTL，or CMOS Compatible Inputs
－Internal Clamp Diodes
－Plastic Single In－Line Package
－Heat－Sink Tab

Always order by complete part number：

Part Number	Max． I_{C}	Max． $\mathrm{V}_{\text {CEx }}$	Min． $\mathrm{V}_{\text {CE（sus）}}$
UDN2878W	5.0 A	50 V	35 V
UDN2879W	5.0 A	80 V	50 V
UDN2879W－2	4.0 A	80 V	50 V

PARTIAL SCHEMATIC
One of 4 Drivers

Dwg. No. A-12,037
NOTE: Pin 3 must be connected to ground for proper operation.

2878 AND 2879
QUAD HIGH-CUR RENT
DARIINGTON SWIICHIES

ELECTRICAL CHARACTERISTICS at $\mathrm{V}_{\mathrm{S}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (unless otherwise noted).

Characteristic	Symbol	Test Fig.	Applicable Devices	Test Conditions	Limits		
					Min.	Max.	Units
Output Leakage Current	$I_{\text {CEX }}$	1	UDN2878W	$\mathrm{V}_{\text {CE }}=50 \mathrm{~V}$	-	100	$\mu \mathrm{A}$
				$\mathrm{V}_{\mathrm{CE}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$	-	500	$\mu \mathrm{A}$
			UDN2879W/W-2	$\mathrm{V}_{C E}=80 \mathrm{~V}$	-	100	$\mu \mathrm{A}$
				$\mathrm{V}_{C E}=80 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$	-	500	$\mu \mathrm{A}$
Output Sustaining Voltage	$\mathrm{V}_{\text {CE(sus) }}$	-	UDN2878W	$\mathrm{I}_{\mathrm{C}}=4 \mathrm{~A}, \mathrm{~L}=10 \mathrm{mH}$	35	-	V
			UDN2879W	$\mathrm{I}_{\mathrm{C}}=4 \mathrm{~A}, \mathrm{~L}=10 \mathrm{mH}$	50	-	V
			UDN2879W-2	$\mathrm{I}_{\mathrm{C}}=3 \mathrm{~A}, \mathrm{~L}=10 \mathrm{mH}$	50	-	V
Collector-Emitter Saturation Voltage	$\mathrm{V}_{\text {CE(SAT) }}$	2	All	$\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=2.75 \mathrm{~V}$	-	1.1	V
				$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~A}, \mathrm{~V}_{\text {IN }}=2.75 \mathrm{~V}$	-	1.3	V
				$\mathrm{I}_{\mathrm{C}}=2.0 \mathrm{~A}, \mathrm{~V}_{\text {IN }}=2.75 \mathrm{~V}$	-	1.5	V
				$\mathrm{I}_{\mathrm{C}}=3.0 \mathrm{~A}, \mathrm{~V}_{\text {IN }}=2.75 \mathrm{~V}$	-	1.9	V
			UDN2878/79W	$\mathrm{I}_{\mathrm{C}}=4.0 \mathrm{~A}, \mathrm{~V}_{\text {IN }}=3.0 \mathrm{~V}$	-	2.4	V
Input Current	I_{N}	3	All	$\mathrm{V}_{\text {IN }}=2.75 \mathrm{~V}$	-	550	$\mu \mathrm{A}$
				$\mathrm{V}_{\text {IN }}=3.75 \mathrm{~V}$	-	1000	$\mu \mathrm{A}$
Input Voltage	$\mathrm{V}_{\text {IN(ON }}$	4	All	$\mathrm{V}_{\mathrm{CE}}=2.2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=3.0 \mathrm{~A}$	-	2.75	V
			UDN2878/79W	$\mathrm{V}_{\mathrm{CE}}=2.2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=4.0 \mathrm{~A}$	-	2.75	V
Supply Current per Driver	$\mathrm{I}_{\text {S }}$	7	All	$\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=2.75 \mathrm{~V}$	-	6.0	mA
Turn-On Delay	$t_{\text {PLH }}$	-	All	$0.5 \mathrm{E}_{\text {in }}$ to $0.5 \mathrm{E}_{\text {out }}$	-	1.0	$\mu \mathrm{s}$
Turn-Off Delay	$\mathrm{t}_{\text {PHL }}$	-	All	$0.5 \mathrm{E}_{\text {in }}$ to $0.5 \mathrm{E}_{\text {out }}, \mathrm{I}_{\mathrm{C}}=3.0 \mathrm{~A}$	-	1.5	$\mu \mathrm{s}$
Clamp Diode Leakage Current	I_{R}	5	All	$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}$	-	50	$\mu \mathrm{A}$
				$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$	-	100	$\mu \mathrm{A}$
			UDN2879W/W-2	$\mathrm{V}_{\mathrm{R}}=80 \mathrm{~V}$	-	50	$\mu \mathrm{A}$
				$\mathrm{V}_{\mathrm{R}}=80 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$	-	100	$\mu \mathrm{A}$
Clamp Diode Forward Voltage	V_{F}	6	All	$\mathrm{I}_{\mathrm{F}}=3.0 \mathrm{~A}$	-	2.5	V
			UDN2878/79W	$\mathrm{I}_{\mathrm{F}}=4.0 \mathrm{~A}$	-	3.0	V

[^0]
TEST FIGURES

Dwg. No. A-9729A
FIGURE 1

FIGURE 4

Dwg. No. A-10,350
FIGURE 2

FIGURE 5

Dwg. No. A-9732
FIGURE 3

FIGURE 6

FIGURE 7

2878 AND 2879

QUAD HIGH-CURRENT
DARIINGION SWIICHES

TYPICAL APPLICATIONS

Dwg. No. A-11,975

PRINT-HAMMER DRIVER

STEPPER-MOTOR DRIVER

Dwg. No. A-11,795

DIGIT DRIVER FOR MULTIPLEXED INCANDESCENT LAMP DISPLAY

2878 AND 2879
 QUAD HIGH-CURRENT DARUINGTON SWITCHES

Dimensions in Inches

(controlling dimensions)

NOTES: 1. Lead thickness is measured at seating plane or below.
2. Lead spacing tolerance is non-cumulative
3. Exact body and lead configuration at vendor's option within limits shown.
4. Lead gauge plane is 0.030 " below seating plane.

2878 AND 2879
 QUAD HIGH-CURRENT DARUNGTON SWITCHES

Dimensions in Millimeters
 (for reference only)

NOTES: 1. Lead thickness is measured at seating plane or below.
2. Lead spacing tolerance is non-cumulative
3. Exact body and lead configuration at vendor's option within limits shown.
4. Lead gauge plane is 0.762 mm below seating plane.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

POWER SINK DRIVERS SELECTION GUIDE

IN ORDER OF 1) OUTPUT CURRENT, 2) OUTPUT VOLTAGE, 3) NUMBER OF DRIVERS

Output Ratings *			Features					Part Number ${ }^{\dagger}$
mA	V	\#	Serial Input	Latched Drivers	Diode Clamp	Saturated Outputs	Internal Protection	
100	20	8	-	-	-	X	-	2595
	30	32	X	X	-	-	-	5833
	40	32	X	X	-	X	-	5832
250	135	7	-	-	X	-	-	7003
300	45	1	Hall Sensor/Driver		X	-	X	5140
	50	7	-	-	X	-	-	2003
	50	8	-	-	X	-	-	2803
	50	8	-	-	X	X	-	2596
	60	2	Hall Sensor/Driver		-	X	-	5275
	60	4	-	-	X	X	X	2557
	95	7	-	-	X	-	x	2023
	95	8	-	-	X	-	-	2823
350	50	4	-	X	X	-	-	5800
	50	7	-	-	X	-	-	2004
	50	8	-	-	X	-	-	2804
	50	8	-	X	X	-	-	5801
	50	8	X	X	-	-	-	5821
	80	8	X	X	-	-	-	5822
	50	8	X	X	X	-	-	5841
	80	8	X	X	X	-	-	5842
	95	7	X	-	X	-	-	2024
	95	8	-	-	X	-	-	2824
450	30	28	Dual 4 to 14-Line Decoder/Drive			er -	-	6817
600	60	4	-	-	-	X	X	2547
	60	4	-	-	X	X	X	2549
700	60	4	-	-	X	X	X	2543 and 2559
750	50	8	-	-	X	X	-	2597
900	14	2	Hall Sensor/DriverHall Sensor/Driver		X	X	X	3625
	26	2			X	X	X	3626
1000	46	4	Stepper Motor Controller/Driver			MOS	-	7024 and 7029
1200	46	4	Microstepping Controller/Drive			MOS	-	7042
1250	50	4				r	X	5804
	50	4	Stepper Motor Translator/Driver			-	-	2064 and 2068
1500	80	4	-	-	X	-	-	2065 and 2069
1600	50	9	X	X	-	-	X	5829
1800	50	4	-	-	X	-	-	2544
	50	4	-	-	X	-	-	2540
3000	46	4	Stepper Motor Controller/Driver			MOS	-	7026
4000	50	4	-	-	X	-	-	2878
	80	4	-	-	X	-	-	2879

[^1]
[^0]: Caution: High-current tests are pulse tests or require heat sinking.

[^1]: * Current is maximum specified test condition, voltage is maximum rating. See specification for sustaining voltage limits or over-current protection voltage limits.
 \dagger Complete part number includes additional characters to indicate operating temperature range and package style.

