# 5890 AND 5891 

BIMOS II 8－BIT SERIAL－INPUT， LATCHED SOURCE DRIVERS



Note the suffix＇$A$＇devices（DIP）and the suffix ＇LW＇devices（SOIC）are electrically identical and share a common terminal number assignment．
ABSOLUTE MAXIMUM RATINGS

$$
\text { at } \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
$$

Output Voltage，V （UCN5890A \＆UCN5890LW） 80 V
（UCN5891A \＆UCN5891LW） 50 V
Logic Supply Voltage Range，
$\mathrm{V}_{\mathrm{DD}}$ ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．4．5 V to 15 V
Driver Supply Voltage Range， $\mathrm{V}_{\mathrm{BB}}$
（UCN5890A／LW）． $\qquad$ 20 V to 80 V
（UCN5891A／LW）
5．0 V to 50 V
Input Voltage Range，
$\mathrm{V}_{\mathrm{IN}}$ ．．．．．．．．．．．．．．．．．．．．．．． 0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Continuous Output Current，
lout．．．
$-500 \mathrm{~mA}$
Allowable Package Power Dissipation，
$P_{D}$ ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．See Graph
Operating Temperature Range，
$\mathrm{T}_{\mathrm{A}}$ ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range，

$$
\mathrm{T}_{\mathrm{S}} \ldots . . . . . . . . . . . . . . . . . . . . . . . . . . .55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

Caution：CMOS devices have input static protection，but are susceptible to damage when exposed to extremely high static electrical charges．PDF

Frequently applied in non－impact printer systems，the UCN5890A， UCN5890LW，UCN5891A，and UCN5891LW are BiMOS II serial－input， latched source（high－side）drivers．The octal，high－current smart－ power ICs merge an 8－bit CMOS shift register，associated CMOS latches，and CMOS control logic（strobe and output enable）with sourcing power Darlington outputs．Typical applications include multiplexed LED and incandescent displays，relays，solenoids，and similar peripheral loads to a maximum of－ 500 mA per output．

Except for output voltage ratings，these smart high－side driver ICs are equivalent．The UCN5890A／LW are rated for operation with load supply voltages of 20 V to 80 V and a minimum output sustaining voltage of 50 V ．The UCN5891A／LW are optimized for operation with supply voltages of 5 V to 50 V （ 35 V sustaining）．

BiMOS II devices have higher data－input rates than the original BiMOS circuits．With a 5 V logic supply，they will typically operate at better than 5 MHz ．With a 12 V supply，significantly higher speeds are obtained．The CMOS inputs are compatible with standard CMOS and NMOS logic levels．TTL circuits may require the use of appropriate pull－up resistors to ensure a proper input－logic high．A CMOS serial data output，allows cascading these devices in multiple drive－line applications required by many dot matrix，alphanumeric，and bar graph displays．

Suffix＇$A$＇devices are supplied in a standard dual in－line plastic package with copper lead frame for enhanced package power dissipa－ tion characteristics．Suffix＇LW＇devices are supplied in a standard wide－body SOIC package for surface－mount applications．Similar driver，featuring reduced output saturation voltage，are the UCN5895A and A5895SLW．Complementary， 8 －bit serial－input，latched sink drivers are the Series UCN5820A．

## FEATURES

－ 50 V or 80 V Source Outputs
－Output Current to－ 500 mA
－Output Transient－Suppression Diodes
－To 3．3 MHz Data－Input Rate
－Low－Power CMOS Logic and Latches

## 5890 and 5891

8-BIT SERIAL-INPUT,
LATCHED SOURCE DRIVERS


Dwg. GP-018B

TYPICAL INPUT CIRCUIT


Dwg. EP-010-4A
TYPICAL OUTPUT DRIVER


Dwg. No. A-12,648


| $\begin{array}{c}\text { Number of } \\ \text { Outputs ON at }\end{array}$ | $\begin{array}{c}\text { UCN5890/91A } \\ \text { I Max. Allowable Duty Cycle } \\ \text { at }\end{array} \mathbf{T}_{\mathbf{A}}$ of |  |  |
| :---: | :---: | :---: | :---: |$]$


| $\begin{array}{c}\text { Number of } \\ \text { Outputs ON at }\end{array}$ | $\begin{array}{c}\text { UCN5890/91LW Max. Allowable Duty Cycle } \\ \text { at } \\ \mathrm{I}_{\text {OUT }}=\mathbf{- 2 0 0 ~ m A ~}\end{array}$ |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |$]$

## 5890 and 5891

8-BIT SERIAL-INPUT,
LATCHED SOURCE DRIVERS

ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{BB}}=80 \mathrm{~V}$ (UCN5890A/LW) or 50 V (UCN5891A/LW), $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ and 12 V (unless otherwise noted).

| Characteristic | Symbol | $\mathrm{V}_{\text {BB }}$ | Test Conditions | Limits |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Max. | Units |
| Output Leakage Current | ${ }^{\text {ICEX }}$ | Max. | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | - | -50 | $\mu \mathrm{A}$ |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$ | - | -100 | $\mu \mathrm{A}$ |
| Output Saturation Voltage | $\mathrm{V}_{\text {CE(SAT) }}$ | 50 V | $\mathrm{l}_{\text {OUT }}=-100 \mathrm{~mA}$ | - | 1.8 | V |
|  |  |  | $\mathrm{I}_{\text {Out }}=-225 \mathrm{~mA}$ | - | 1.9 | V |
|  |  |  | $\mathrm{l}_{\text {OUT }}=-350 \mathrm{~mA}$ | - | 2.0 | V |
| Output Sustaining Voltage | $\mathrm{V}_{\text {CE(sus) }}$ | Max. | IOUT $=-350 \mathrm{~mA}, \mathrm{~L}=2 \mathrm{mH}, \mathrm{UCN5891} \mathrm{~A} / \mathrm{LW}$ | 35 | - | V |
|  |  |  | $\mathrm{I}_{\text {OUT }}=-350 \mathrm{~mA}, \mathrm{~L}=2 \mathrm{mH}$, UCN5890A/LW | 50 | - | V |
| Input Voltage | $\mathrm{V}_{\operatorname{IN}(1)}$ | 50 V | $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ | 3.5 | 5.3 | V |
|  |  |  | $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$ | 10.5 | 12.3 | V |
|  | $\mathrm{V}_{\operatorname{IN}(0)}$ | 50 V | $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ to 12 V | -0.3 | +0.8 | V |
| Input Current | ${ }_{\ln (1)}$ | 50 V | $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}$ | - | 50 | $\mu \mathrm{A}$ |
|  |  |  | $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$ | - | 240 | $\mu \mathrm{A}$ |
| Input Impedance | $\mathrm{Z}_{\text {IN }}$ | 50 V | $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ | 100 | - | k $\Omega$ |
|  |  |  | $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$ | 50 | - | k $\Omega$ |
| Max. Clock Frequency | $\mathrm{f}_{\mathrm{c}}$ | 50 V |  | 3.3 | - | MHz |
| Serial Data Output Resistance | ROUT | 50 V | $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ | - | 20 | k $\Omega$ |
|  |  |  | $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$ | - | 6.0 | k $\Omega$ |
| Turn-ON Delay | tplh | 50 V | Output Enable to Output, Iout $=-350 \mathrm{~mA}$ | - | 2.0 | $\mu \mathrm{s}$ |
| Turn-OFF Delay | $t_{\text {PHL }}$ | 50 V | Output Enable to Output, IOUT $=-350 \mathrm{~mA}$ | - | 10 | $\mu \mathrm{s}$ |
| Supply Current | ${ }_{\text {BB }}$ | 50 V | All outputs ON, All outputs open | - | 10 | mA |
|  |  |  | All outputs OFF | - | 200 | $\mu \mathrm{A}$ |
|  | IDD | 50 V | $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, All outputs OFF, Inputs $=0 \mathrm{~V}$ | - | 100 | $\mu \mathrm{A}$ |
|  |  |  | $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$, All outputs OFF, Inputs $=0 \mathrm{~V}$ | - | 200 | $\mu \mathrm{A}$ |
|  |  |  | $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, One output ON, All Inputs $=0 \mathrm{~V}$ | - | 1.0 | mA |
|  |  |  | $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$, One output ON, All Inputs $=0 \mathrm{~V}$ | - | 3.0 | mA |
| Diode Leakage Current | $\mathrm{I}_{\mathrm{R}}$ | Max. | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | - | 50 | $\mu \mathrm{A}$ |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$ | - | 100 | $\mu \mathrm{A}$ |
| Diode Forward Voltage | $\mathrm{V}_{\mathrm{F}}$ | Open | $\mathrm{I}_{\mathrm{F}}=350 \mathrm{~mA}$ | - | 2.0 | V |

NOTES: Turn-off delay is influenced by load conditions. Systems applications well below the specified output loading may require timing considerations for some designs, i.e., multiplexed displays or when used in combination with sink drivers in a totem pole configuration
Positive (negative) current is defined as going into (coming out of) the specified device pin.


TIMING CONDITIONS
$\left(\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}\right.$, Logic Levels are $\mathrm{V}_{\mathrm{DD}}$ and Ground $)$
A. Minimum Data Active Time Before Clock Pulse
(Data Set-Up Time)
75 ns
B. Minimum Data Active Time After Clock Pulse
(Data Hold Time)
75 ns
C. Minimum Data Pulse Width ............................................................... 150 ns
D. Minimum Clock Pulse Width .............................................................. 150 ns
E. Minimum Time Between Clock Activation and Strobe ........................ 300 ns
F. Minimum Strobe Pulse Width ............................................................ 100 ns
G. Typical Time Between Strobe Activation and

Output Transition
$1.0 \mu \mathrm{~s}$

Serial Data present at the input is transferred to the shift register on the logic " 0 " to logic "1" transition of the CLOCK input pulse. On succeeding CLOCK pulses, the registers shift data information towards the SERIAL DATA OUTPUT. The SERIAL DATA must appear at the input prior to the rising edge of the CLOCK input waveform.

Information present at any register is transferred to the respective latch when the STROBE is high (serial-to-parallel conversion). The latches will continue to accept new data as long as the STROBE is held high. Applications where the latches are bypassed (STROBE tied high) will require that the OUTPUT ENABLE input be high during serial data entry.

When the OUTPUT ENABLE input is high, all of the output buffers are disabled (OFF) without affecting the information stored in the latches or shift register. With the OUTPUT ENABLE input low, the outputs are controlled by the state of their respective latches.

TRUTH TABLE

$L=$ Low Logic Level $H=$ High Logic Level $X=$ Irrelevant $\quad P=$ Present State $\quad R=$ Previous State

## TYPICAL APPLICATION SOLENOID OR RELAY DRIVER



# 5890 AND 5891 <br> 8-BIT SERIAL-INPUT, <br> LATCHED SOURCE DRIVERS 

UCN5890A and UCN5891A
Dimensions in Inches
(controlling dimensions)


Dimensions in Millimeters (for reference only)


NOTES: 1. Lead thickness is measured at seating plane or below.
2. Lead spacing tolerance is non-cumulative.
3. Exact body and lead configuration at vendor's option within limits shown.

## UCN5890LW and UCN5891LW

Dimensions in Inches
(for reference only)


Dwg. MA-008-16A in
Dimensions in Millimeters
(controlling dimensions)



Dwg. MA-008-16A mm

NOTES: 1. Lead spacing tolerance is non-cumulative.
2. Exact body and lead configuration at vendor's option within limits shown.

# BiMOS II (Series 5800) \& DABiC IV (Series 6800) INTELLIGENT POWER INTERFACE DRIVERS SELECTION GUIDE 

| Function | Output Ratings * |  | Part Number $\dagger$ |
| :---: | :---: | :---: | :---: |
| SERIAL-INPUT LATCHED DRIVERS |  |  |  |
| 8-Bit (saturated drivers) | -120 mA | $50 \mathrm{~V} \ddagger$ | 5895 |
| 8-Bit | 350 mA | 50 V | 5821 |
| 8-Bit | 350 mA | 80 V | 5822 |
| 8-Bit | 350 mA | $50 \mathrm{~V} \ddagger$ | 5841 |
| 8-Bit | 350 mA | $80 \mathrm{~V} \ddagger$ | 5842 |
| 9-Bit | 1.6 A | 50 V | 5829 |
| 10-Bit (active pull-downs) | -25 mA | 60 V | 5810-F and 6809/10 |
| 12-Bit (active pull-downs) | -25 mA | 60 V | 5811 and 6811 |
| 20-Bit (active pull-downs) | -25 mA | 60 V | 5812-F and 6812 |
| 32-Bit (active pull-downs) | -25 mA | 60 V | 5818-F and 6818 |
| 32-Bit | 100 mA | 30 V | 5833 |
| 32-Bit (saturated drivers) | 100 mA | 40 V | 5832 |
| PARALLEL-INPUT LATCHED DRIVERS |  |  |  |
| 4-Bit | 350 mA | $50 \mathrm{~V} \ddagger$ | 5800 |
| 8-Bit | -25 mA | 60 V | 5815 |
| 8-Bit | 350 mA | $50 \mathrm{~V} \ddagger$ | 5801 |
| SPECIAL-PURPOSE FUNCTIONS |  |  |  |
| Unipolar Stepper Motor Translator/Driver | 1.25 A | $50 \mathrm{~V} \ddagger$ | 5804 |
| Addressable 28-Line Decoder/Driver | 450 mA | 30 V | 6817 |

* Current is maximum specified test condition, voltage is maximum rating. See specification for sustaining voltage limits.

Negative current is defined as coming out of (sourcing) the output.
$\dagger$ Complete part number includes additional characters to indicate operating temperature range and package style.
$\ddagger$ Internal transient-suppression diodes included for inductive-load protection.

[^0]
[^0]:    Allegro MicroSystems, Inc. reserves the right to make, from time
    to time, such departures from the detail specifications as may be required to permit improvements in the design of its products.

    The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

