SLIS028B - APRIL 1994 - REVISED SEPTEMBER 1995 The TPIC2302 is a monolithic power DMOS array that consists of three electrically isolated N-channel enhancement-mode DMOS transistors configured with a common source and open drains. The TPIC2302 is offered in a standard 8-pin small-outline surface-mount (D) package. The TPIC2302 is characterized for operation over the case temperature range of -40°C to 125°C. ### schematic ### absolute maximum ratings over operating case temperature range (unless otherwise noted)† | Drain-to-source voltage, V _{DS} | 60 V | |--|------| | Gate-to-source voltage, V _{GS} | | | Continuous drain current, each output, all outputs on, T _C = 25°C | | | Pulsed drain current, each output, T _C = 25°C (see Note 1 and Figure 6) | | | Single-pulse avalanche energy, T _C = 25°C, E _{AS} (see Figures 4 and 16) | | | Continuous total power dissipation at (or below) T _C = 25°C | | | Operating virtual junction temperature range, Tj | | | Operating case temperature range, T _C | | | Storage temperature range, T _{stg} | | | Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds | | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: Pulse duration = 10 ms, duty cycle = 2% ### TPIC2302 3-CHANNEL COMMON-SOURCE POWER DMOS ARRAY SLIS028B - APRIL 1994 - REVISED SEPTEMBER 1995 ## electrical characteristics, $T_C = 25^{\circ}C$ (unless otherwise noted) | PARAMETER | | TEST CONDITIONS | | MIN | TYP | MAX | UNIT | |----------------------|---|---|-------------------------|------|------|-------|------| | V _{(BR)DSX} | Drain-to-source breakdown voltage | I _D = 250 μA, | $V_{GS} = 0$ | 60 | | | V | | VGS(th) | Gate-to-source threshold voltage | $I_D = 1 \text{ mA},$ | $V_{DS} = V_{GS}$ | 1.5 | 1.85 | 2.2 | V | | V _{DS(on)} | Drain-to-source on-state voltage | I _D = 1 A,
See Notes 2 and 3 | V _{GS} = 10 V, | | 0.4 | 0.475 | V | | V _{F(SD)} | Forward on-state voltage, source-to-drain | I _S = 1 A,
V _{GS} = 0 (Z1, Z2, Z3),
See Notes 2 and 3 | | | 0.9 | 1.1 | V | | 1 | Zero-gate-voltage drain current | V _{DS} = 48 V, | T _C = 25°C | | 0.05 | 1 | | | IDSS | | $V_{GS} = 0$ | T _C = 125°C | | 0.5 | 10 | μΑ | | IGSSF | Forward gate current, drain short circuited to source | VGS = 16 V, | $V_{DS} = 0$ | | 10 | 100 | nA | | IGSSR | Reverse gate current, drain short circuited to source | V _{SG} = 16 V, | $V_{DS} = 0$ | | 10 | 100 | nA | | | Leakage current, drain-to-GND | V _R = 48 V | T _C = 25°C | | 0.05 | 1 | | | likg | | | T _C = 125°C | | 0.5 | 10 | μΑ | | rno() | Static drain-to-source on-state resistance | $V_{GS} = 10 \text{ V},$ $I_D = 1 \text{ A},$ See Notes 2 and 3 and Figures 6 and 7 | T _C = 25°C | | 0.4 | 0.475 | Ω | | ^r DS(on) | Static drain-to-source on-state resistance | | T _C = 125°C | | 0.63 | 0.7 | 22 | | 9fs | Forward transconductance | V _{DS} = 10 V,
See Notes 2 and 3 | $I_D = 0.5 A,$ | 0.85 | 1.02 | | S | | C _{iss} | Short-circuit input capacitance, common source | | | | 115 | 145 | | | C _{oss} | Short-circuit output capacitance, common source | V _{DS} = 25 V, | $V_{GS} = 0$, | | 60 | 75 | pF | | C _{rss} | Short-circuit reverse-transfer capacitance, common source | f = 1 MHz | | | 30 | 40 | Ρ' | NOTES: 2. Technique should limit $T_J - T_C$ to 10°C maximum, pulse duration ≤ 5 ms. ## source-to-drain diode characteristics, $T_C = 25^{\circ}C$ | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | | |---|--|-------------|-----|------|------|----| | t _{rr(SD)} Reverse-recovery time | $I_S = 0.5 \text{ A}, V_{GS} = 0, V_D$ | DS = 48 V, | | 65 | | ns | | Q _{RR} Total diode charge | di/dt = 100 A/μs, Se | ee Figure 1 | | 0.03 | | μС | ^{3.} These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts. ### resistive-load switching characteristics, $T_C = 25^{\circ}C$ | | PARAMETER TEST CONDITIONS | | MIN | TYP | MAX | UNIT | | | | | | | | | | | | | | | | |---------------------|---------------------------------|---|-----|---------------------------|-----|------|-----|-----|--|-------|-------|---|-----------------------------|--|--|----------------|--------------------------|--|-----|-----|----| | td(on) | Turn-on delay time | | | | | 21 | 42 | | | | | | | | | | | | | | | | td(off) | Turn-off delay time | $V_{DD} = 25 \text{ V},$
$t_{f1} = 10 \text{ ns},$ | | $t_{r1} = 10 \text{ ns},$ | | 20 | 40 | 20 | | | | | | | | | | | | | | | t _{r2} | Rise time | | | | | 5 | 10 | ns | | | | | | | | | | | | | | | t _{f2} | Fall time | | | | | 13 | 26 | | | | | | | | | | | | | | | | Qg | Total gate charge | | | | | 3.1 | 3.8 | | | | | | | | | | | | | | | | Q _{gs(th)} | Threshold gate-to-source charge | VDS = 48 V,
See Figure 3 | | | | | | | | 1 - 0 | 1 - 0 | 1 | VDS = 48 V,
See Figure 3 | | | $I_D = 0.5 A,$ | $V_{GS} = 10 \text{ V},$ | | 0.4 | 0.5 | nC | | Q _{gd} | Gate-to-drain charge | gara a | | | | 1.3 | 1.6 | | | | | | | | | | | | | | | | L _D | Internal drain inductance | | | | | 5 | | -11 | | | | | | | | | | | | | | | LS | Internal source inductance | | | | | 5 | | nΗ | | | | | | | | | | | | | | | Rg | Internal gate resistance | | | | | 0.25 | | Ω | | | | | | | | | | | | | | ### thermal resistance | PARAMETER | | TEST CONDITIONS | | | TYP | MAX | UNIT | |-----------------|--|-------------------------------|------------|--|-----|-----|-------| | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | All outputs with equal power | See Note 4 | | 130 | | °C/W | | $R_{\theta JP}$ | Junction-to-pin thermal resistance | All outputs with equal power, | See Note 4 | | 44 | | C/ VV | NOTE 4: Package mounted on an FR4 printed-circuit board with no heat sink ### PARAMETER MEASUREMENT INFORMATION †I_{RM} = maximum recovery current Figure 1. Reverse-Recovery-Current Waveform of Source-to-Drain Diode ### PARAMETER MEASUREMENT INFORMATION NOTE A: C_L includes probe and jig capacitance. Figure 2. Resistive-Switching Test Circuit and Voltage Waveforms Figure 3. Gate-Charge Test Circuit and Voltage Waveform #### PARAMETER MEASUREMENT INFORMATION † Non-JEDEC symbol for avalanche time NOTES: A. The pulse generator has the following characteristics: $t_{\Gamma} \le 10$ ns, $t_{f} \le 10$ ns, $t_{O} = 50 \ \Omega$. B. Input pulse duration (t_{W}) is increased until peak current IAS = 5 A. **GATE-TO-SOURCE THRESHOLD VOLTAGE** Energy test level is defined as $E_{AS} = \frac{I_{AS} \times V_{(BR)DSX} \times t_{av}}{2} = 9 \text{ mJ}$, where $t_{av} = \text{avalanche time}$. Figure 4. Single-Pulse Avalanche-Energy Test Circuit and Waveforms ### TYPICAL CHARACTERISTICS ## **JUNCTION TEMPERATURE** 2.5 VGS (th) - Gate-to-Source Threshold Voltage - V 2 $I_D = 1 \text{ mA}$ 1.5 $I_D = 100 \, \mu A$ 0.5 -40 -20 20 40 60 80 100 120 140 160 T_J - Junction Temperature - °C Figure 5 STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE Figure 6 T_J - Junction Temperature - °C 60 80 100 120 140 160 40 20 -40 -20 #### TYPICAL CHARACTERISTICS ### STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE # Figure 7 # DISTRIBUTION OF FORWARD TRANSCONDUCTANCE Figure 9 # DRAIN CURRENT vs Figure 8 ### DRAIN CURRENT vs Figure 10 ### **TYPICAL CHARACTERISTICS** Figure 11 # DRAIN-TO-SOURCE VOLTAGE AND GATE-TO-SOURCE VOLTAGE # SOURCE-TO-DRAIN DIODE CURRENT vs SOURCE-TO-DRAIN VOLTAGE Figure 12 ### REVERSE-RECOVERY TIME Figure 14 ### THERMAL INFORMATION # †Less than 0.1 duty cycle Figure 15 ### THERMAL INFORMATION ## D PACKAGE† NORMALIZED JUNCTION-TO-AMBIENT THERMAL RESISTANCE † Device mounted on FR4 printed-circuit board with no heat sink NOTE A: $Z_{\theta A}(t) = r(t) R_{\theta J A}$ $t_W = \text{pulse duration}$ $t_C = \text{cycle time}$ $d = duty cycle = t_W/t_C$ Figure 17 #### **IMPORTANT NOTICE** Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof. Copyright © 1998, Texas Instruments Incorporated