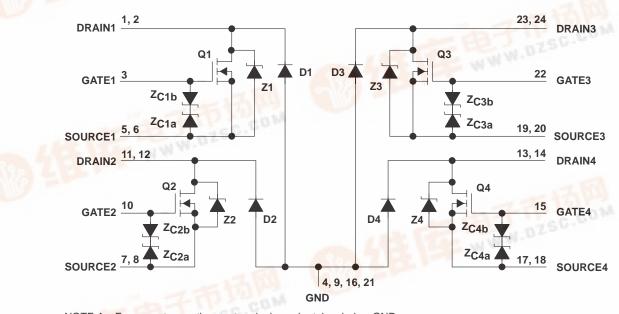
查询TPIC5423L供应商 **建多邦,专业PCB打样工厂,24小时加急出货**TPIC5423L 4-CHANNEL INDEPENDENT GATE-PROTECTED LOGIC-LEVEL POWER DMOS ARRAY SLIS045 – NOVEMBER 1994

- Low r_{DS(on)} . . . 0.32 Ω Typ
- Voltage Output . . . 60 V
- Input Protection Circuitry . . . 18 V
- Pulsed Current . . . 4 A Per Channel
- Extended ESD Capability . . . 4000 V
- Direct Logic-Level Interface


description

schematic

The TPIC5423L is a monolithic gate-protected logic-level power DMOS array that consists of four electrically isolated independent N-channel enhancement-mode DMOS transistors. Each transistor features integrated high-current zener diodes (Z_{CXa} and Z_{CXb}) to prevent gate damage in the event that an overstress condition occurs. These zener diodes also provide up to 4000 V of ESD protection when tested using the humanbody model of a 100-pF capacitor in series with a 1.5-k Ω resistor.

DW PACKAGE (TOP VIEW)						
DRAIN1	•	24] DRAIN3				
DRAIN1	2	23 DRAIN3				
GATE1	3	22 GATE3				
GND [4	21 GND				
SOURCE1	5	20 SOURCE3				
SOURCE1	6	19 SOURCE3				
SOURCE2	7	18 SOURCE4				
SOURCE2	8	17 SOURCE4				
GND [9	16 GND				
GATE2	10	15 GATE4				
DRAIN2	11	14] DRAIN4				
DRAIN2	12	13 DRAIN4				
	5	MOD				

The TPIC5423L is offered in a 24-pin wide-body surface-mount (DW) package and is characterized for operation over the case temperature of -40° C to 125° C.

NOTE A: For correct operation, no terminal may be taken below GND.

absolute maximum ratings over operating case temperature range (unless otherwise noted)[†]

Drain-to-source voltage, V _{DS} Source-to-GND voltage	
Drain-to-GND voltage	100 V
Gate-to-source voltage range, V _{GS}	9 V to 18 V
Continuous drain current, each output, T _C = 25°C	
Continuous source-to-drain diode current, $T_C = 25^{\circ}C$	1.25 A
Pulsed drain current, each output, I_{max} , $T_{C} = 25^{\circ}C$ (see Note 1 and Figure 15)	
Continuous gate-to-source zener-diode current, $T_C = 25^{\circ}C$	±50 mA
Pulsed gate-to-source zener-diode current, $T_C = 25^{\circ}C$	±500 mA
Single-pulse avalanche energy, E_{AS} , $T_C = 25^{\circ}C$ (see Figures 4 and 16)	96 mJ
Continuous total dissipation, $T_C = 25^{\circ}C$ (see Figure 15)	1.39 W
Operating virtual junction temperature range, T _J	40°C to 150°C
Operating case temperature range, T _C	40°C to 125°C
Storage temperature range	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: Pulse duration = 10 ms, duty cycle = 2%

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
V(BR)DSX	Drain-to-source breakdown voltage	$I_{D} = 250 \mu A$, $V_{GS} = 0$		60			V
VGS(th)	Gate-to-source threshold voltage	I _D = 1 mA, See Figure 5	$V_{DS} = V_{GS}$,	1.5	1.75	2.2	V
V(BR)GS	Gate-to-source breakdown voltage	I _{GS} = 250 μA		18			V
V(BR)SG	Source-to-gate breakdown voltage	I _{SG} = 250 μA		9			V
V(BR)	Reverse drain-to-GND breakdown voltage	Drain-to-GND curren	nt = 250 μA	100			V
V _{DS(on)}	Drain-to-source on-state voltage	I _D = 1.25 A, See Notes 2 and 3	V _{GS} = 5 V,		0.4	0.47	V
V _{F(SD)}	Forward on-state voltage, source-to-drain	I_S = 1.25 A, V_{GS} = 0 (Z1, Z2, Z3, Z4), See Notes 2 and 3 and Figure 12			0.9	1.1	V
VF	Forward on-state voltage, GND-to-drain	I _D = 1.25 A (D1, D2, D3, D4), See Notes 2 and 3			2		V
IDSS	Zero-gate-voltage drain current	$V_{DS} = 48 V,$ $V_{GS} = 0$	T _C = 25°C		0.05	1	۸
			T _C = 125°C		0.5	10	μA
IGSSF	Forward-gate current, drain short circuited to source	V _{GS} = 15 V,	$V_{DS} = 0$		20	200	nA
IGSSR	Reverse-gate current, drain short circuited to source	V _{SG} = 5 V,	$V_{DS} = 0$		10	100	nA
lu	Leakage current, drain-to-GND	V _{DGND} = 48 V	$T_C = 25^{\circ}C$		0.05	1	μΑ
likg			$T_{C} = 125^{\circ}C$		0.5	10	
^r DS(on)	Static drain-to-source on-state resistance	$\label{eq:GS} \begin{array}{l} V_{GS} = 5 \ \text{V}, \\ I_D = 1.25 \ \text{A}, \\ \text{See Notes 2 and 3} \\ \text{and Figures 6 and 7} \end{array}$	T _C = 25°C		0.32	0.375	Ω
			T _C = 125°C		0.44	0.55	22
9fs	Forward transconductance	V _{DS} = 15 V, See Notes 2 and 3 a	I _D = 0.625 A, nd Figure 9	1.25	1.63		S
C _{iss}	Short-circuit input capacitance, common source				200	250	
C _{oss}	Short-circuit output capacitance, common source	V _{DS} = 25 V,	$V_{GS} = 0,$		100	125	pF
C _{rss}	Short-circuit reverse-transfer capacitance, common source	f = 1 MHz,	See Figure 11		60	75	

electrical characteristics $T_{c} = 25^{\circ}C$ (unless otherwise noted)

NOTES: 2. Technique should limit $T_J - T_C$ to 10°C maximum. 3. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

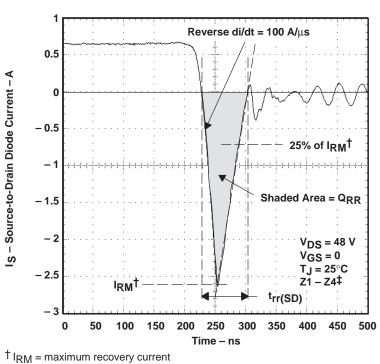
source-to-drain and GND-to-drain diode characteristics, T_C = 25°C

	PARAMETER	TEST CONDITIONS			TYP	MAX	UNIT
t _{rr} Reverse-recovery time		Z1, Z2, Z3, and Z4		80		ns	
	$V_{GS} = 0$, di/dt = 100 A/µs, See Figures 1 and 14	D1, D2, D3, and D4		130			
Q _{RR} Total diode charge		Z1, Z2, Z3, and Z4		0.8			
		D1, D2, D3, and D4		0.66		μC	

resistive-load switching characteristics, T_C = 25°C

PARAMETER		-	TEST CONDITIONS			TYP	MAX	UNIT
^t d(on)	Turn-on delay time					34	70	
^t d(off)	Turn-off delay time	V _{DD} = 25 V,		t _{en} = 10 ns,		20	40	
t _r	Rise time	t _{dis} = 10 ns,				28	55	ns
t _f	Fall time					15	30	
Qg	Total gate charge	V _{DS} = 48 V, See Figure 3		V _{GS} = 5 V,		6.6	8	
Q _{gs(th)}	Threshold gate-to-source charge		$I_{D} = 0.625 A,$			0.5	0.6	nC
Q _{gd}	Gate-to-drain charge					2.6	3.2	
LD	Internal drain inductance					5		
LS	Internal source inductance					5		nH
Rg	Internal gate resistance					0.25		Ω

thermal resistance

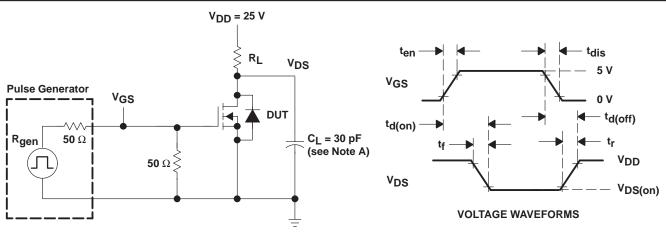

	PARAMETER TEST CONDITIONS		MIN	TYP	MAX	UNIT
$R_{\theta J A}$	Junction-to-ambient thermal resistance	See Notes 4 and 7		90		
$R_{\theta JB}$	Junction-to-board thermal resistance	See Notes 5 and 7		49		°C/W
$R_{\theta JP}$	Junction-to-pin thermal resistance	See Notes 6 and 7		28		

NOTES: 4. Package mounted on an FR4 printed-circuit board with no heatsink.

5. Package mounted on a 24 in², 4-layer FR4 printed-circuit board.

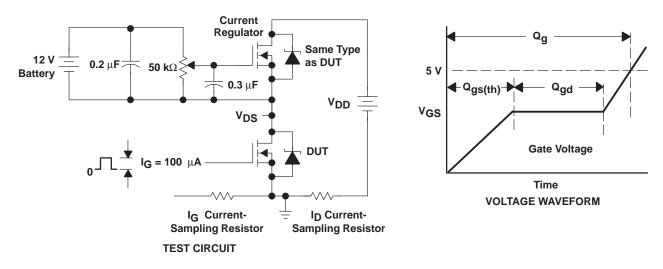
6. Package mounted in intimate contact with infinite heatsink.

7. All outputs with equal power.

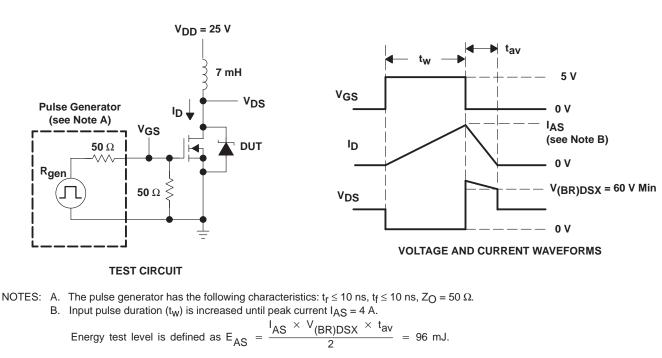


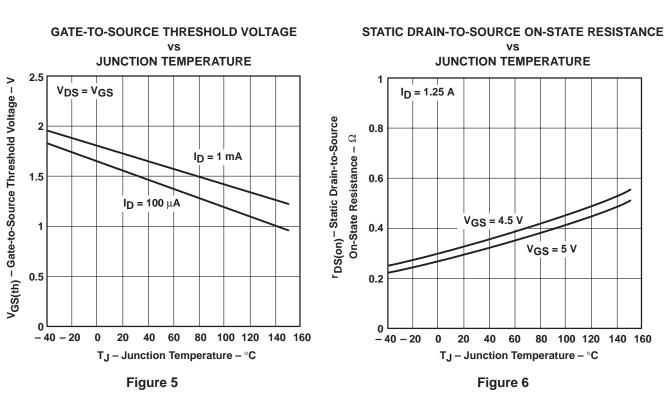
[‡] The above waveform is representative of D1, D2, D3, and D4 in shape only.

Figure 1. Reverse-Recovery-Current Waveform of Source-to-Drain Diode


PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

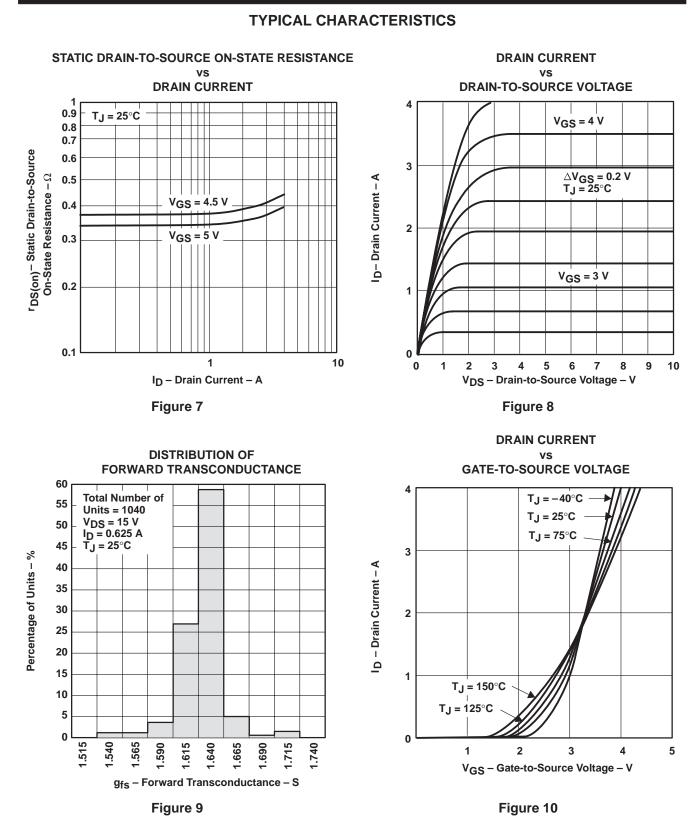



TPIC5423L 4-CHANNEL INDEPENDENT GATE-PROTECTED LOGIC-LEVEL POWER DMOS ARRAY

SLIS045 – NOVEMBER 1994

PARAMETER MEASUREMENT INFORMATION

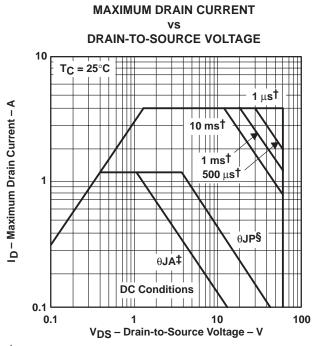
Figure 4. Single-Pulse Avalanche-Energy Test Circuit and Waveforms



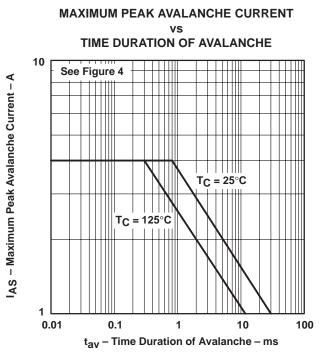
TYPICAL CHARACTERISTICS

4-CHANNEL INDEPENDENT GATE-PROTECTED LOGIC-LEVEL POWER DMOS ARRAY

SLIS045 - NOVEMBER 1994

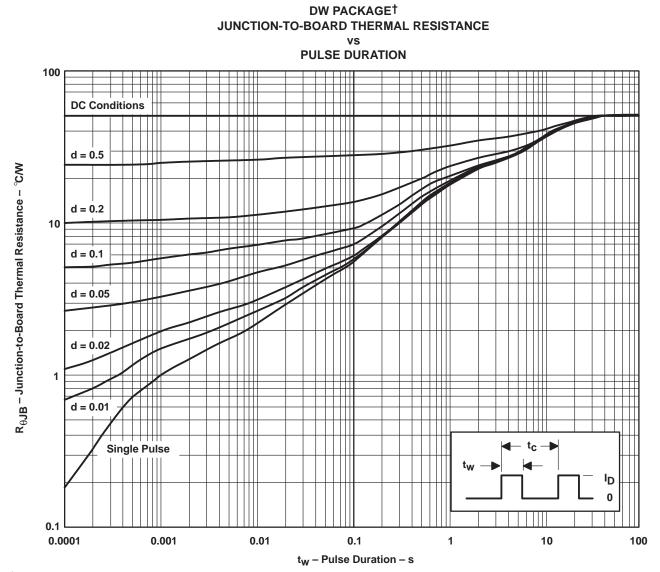


SOURCE-TO-DRAIN DIODE CURRENT CAPACITANCE VS vs SOURCE-TO-DRAIN VOLTAGE DRAIN-TO-SOURCE VOLTAGE 400 10 V_{GS} = 0 f = 1 MHz $V_{GS} = 0$ 360 ISD – Source-to-Drain Diode Current – A 6 Tj = 25°Ċ 320 CisS(0) = 301 pF 4 C_{oss(0)} = 384 pF 280 $C_{rss(0)} = 144 \text{ pF}$ Capacitance – pF 2 240 Ciss 200 1 160 0.6 $T_J = -40^{\circ}C$ TJ = 125°C Coss 120 0.4 TJ = 150°C TJ = 25°C Crss 80 0.2 40 Тј = 75°С 0 0.1 4 0 8 12 16 20 24 28 40 32 36 0.1 10 1 VDS - Drain-to-Source Voltage - V VSD - Source-to-Drain Voltage - V Figure 11 Figure 12 DRAIN-TO-SOURCE VOLTAGE AND GATE-TO-SOURCE VOLTAGE **REVERSE-RECOVERY TIME** vs vs **GATE CHARGE REVERSE di/dt** 150 60 12 $I_{D} = 0.625 \text{ A}$ V_{DS} = 48 V TJ = 25°C $V_{GS} = 0$ See Figure 3 I_S = 0.625 A 125 VDS – Drain-to-Source Voltage – V 50 10 – Reverse-Recovery Time – ns > T_J = 25°C V_{DD} = 20 V V_{GS} – Gate-to-Source Voltage – ^v See Figure 1 V_{DD} = 30 V 100 40 8 75 30 6 D1, D2, D3, and D4 50 20 4 Z1, Z2, Z3, and Z4 V_{DD} = 48 V t T 10 25 2 V_{DD} = 20 V 0 0 0 0 100 200 300 400 500 600 0 1 2 3 5 6 7 4 Reverse di/dt - A/µs Qg - Gate Charge - nC Figure 13 Figure 14


THERMAL INFORMATION

[†]Less than 2% duty cycle

[‡] Device mounted on FR4 printed-circuit board with no heatsink. § Device mounted in intimate contact with infinite heatsink.



THERMAL INFORMATION

[†] Device mounted on 24 in², 4-layer FR4 printed-circuit board with no heatsink.

NOTE A: $Z_{\theta B}(t) = r(t) R_{\theta JB}$ $t_W = pulse duration$

t_c = cycle time

 $d = duty cycle = t_W/t_C$

Figure 17

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated