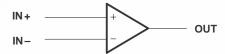
捷多邦,专业PCB打样工厂,24小时加**级3303, MC3403 QUADRUPLE LOW-POWER OPERATIONAL AMPLIFIERS**

SLOS101A - FEBRUARY 1979 - REVISED MAY 1999

- Wide Range of Supply Voltages, Single Supply ... 3 V to 36 V or Dual Supplies
- Class AB Output Stage
- **True Differential Input Stage**
- **Low Input Bias Current**
- **Internal Frequency Compensation**
- **Short-Circuit Protection**
- Designed to Be Interchangeable With W.DZSC.COM Motorola MC3303, MC3403

D OR N PACKAGE (TOP VIEW)



description

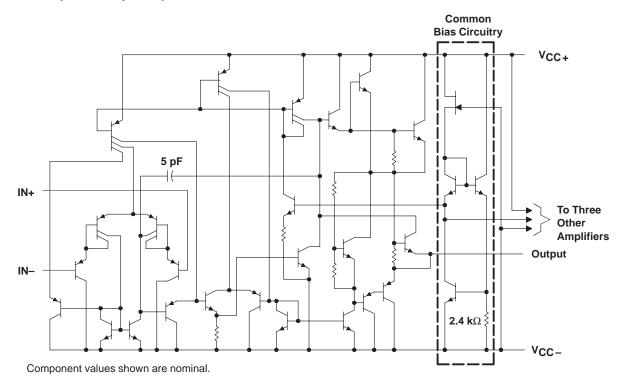
The MC3303 and the MC3403 are quadruple operational amplifiers similar in performance to the μA741, but with several distinct advantages. They are designed to operate from a single supply over a range of voltages from 3 V to 36 V. Operation from split supplies also is possible, provided the difference between the two supplies is 3 V to 36 V. The common-mode input range includes the negative supply. Output range is from the negative supply to V_{CC} – 1.5 V. Quiescent supply currents are less than one-half those of the μA741.

The MC3303 is characterized for operation from -40°C to 85°C, and the MC3403 is characterized for operation from 0°C to 70°C.

logic diagram (each amplifier)

AVAILABLE OPTIONS

	VIOMAY	PACK	AGE
TA	V _{IO} MAX AT 25°C	SMALL OUTLINE (D)	PLASTIC DIP (N)
0°C to 70°C	10 mV	MC3403D	MC3403N
-40°C to 85°C	8 mV	MC3303D	MC3303N


The D packages are available taped and reeled. Add R suffix to the device type (e.g., MC3403DR).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLOS101A - FEBRUARY 1979 - REVISED MAY 1999

schematic (each amplifier)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		MC3303	MC3403	UNIT
Supply voltage (see Note 1)	V _{CC+}	18	18	V
Supply voltage (see Note 1)	V _{CC} -	-18	18 —18 36 ±36 ±18 127 78 260	V
Supply voltage, V _{CC+} with respect to V _{CC-}		36	36	V
Differential input voltage (see Note 2)		±36	±36	V
Input voltage (see Notes 1 and 3)		±18	±18	V
Deckage thermal impedance () + (see Note 4)	D package	127		°C/W
Package thermal impedance, θ _{JA} (see Note 4)	N package	7	18 —18 36 ±36 ±18 127 78 260	C/VV
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds		260	260	°C
Storage temperature range	e temperature range – 65 to 150			

NOTES: 1. These voltage values are with respect to the midpoint between V_{CC+} and V_{CC-} .

- 2. Differential voltages are at IN+ with respect to IN-.
- 3. Neither input must ever be more positive than V_{CC+} or more negative than V_{CC-} .
- 4. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

recommended operating conditions

	MIN	MAX	UNIT	
Single-supply voltage, V _{CC}	5	30	V	
Dual-supply voltage	V _{CC+}	2.5	15	V
Dual-supply voltage	VCC-	-2.5	-15	
Operating free air temperature range. To	MC3303	-40	85	°C
Operating free-air temperature range, T _A	MC3403	0	70	

MC3303, MC3403 QUADRUPLE LOW-POWER OPERATIONAL AMPLIFIERS

SLOS101A - FEBRUARY 1979 - REVISED MAY 1999

electrical characteristics at specified free-air temperature, V_{CC+} = 14 V, V_{CC-} = 0 V for MC3303, $V_{CC\pm}$ = ±15 V for MC3403 (unless otherwise noted)

	PARAMETER	TEST CONDITIONS!		MC3303			MC3403			
TANAMETER		TEST CONDITIONS†		MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	See Note 5	25°C		2	8		2	10	mV
۷IO	par onoor voltago	Occ Note 5	Full range			10			12	IIIV
αΝΙΟ	Temperature coefficient of input offset voltage	See Note 5	Full range		10			10		μV/°C
lio	land offer a comment	See Note 5	25°C		30	75		30	50	nA
lio	Input offset current	See Note 5	Full range			250			200	IIA
αΙΙΟ	Temperture coefficient of input offset current	See Note 5	Full range		50			50		pA/C
l	Innut high oursent	See Note 5	25°C		-0.2	-0.5		-0.2	-0.5	μA
ΙΒ	Input bias current	See Note 5	Full range			-1			-0.8	μΑ
VICR	Common-mode input voltage range‡		25°C	VCC- to 12	V _{CC} - to 12.5		V _{CC} - to 13	V _{CC} - to 13.5		V
	Peak output voltage swing	R _L = 10 kΩ	25°C	12	12.5		±12	±13.5		
V_{OM}		R _L = 2 kΩ	25°C	10	12		±10	±13		V
	Swirig	R _L = 2 kΩ	Full range	10			±10			
۸، ۳۰	Large-signal differential	$V_0 = \pm 10 \text{ V},$	25°C	20	200		20	200		V/mV
AVD	voltage amplification	$R_L = 2 k\Omega$	Full range	15			15			V/IIIV
ВОМ	Maximum-output-swing bandwidth	$V_{OPP} = 20 \text{ V},$ $A_{VD} = 1,$ $THD \le 5\%,$ $R_{L} = 2 \text{ k}\Omega$	25°C		9			9		kHz
B ₁	Unity-gain bandwidth	$V_O = 50 \text{ mV},$ $R_L = 10 \text{ k}\Omega$	25°C		1			1		MHz
φm	Phase margin	$C_L = 200 \text{ pF},$ $R_L = 2 \text{ k}\Omega$	25°C		60°			60°		
rį	Input resistance	f = 20 Hz	25°C	0.3	1		0.3	1		МΩ
r _O	Output resistance	f = 20 Hz	25°C		75			75		Ω
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min	25°C	70	90		70	90		dB
ksvs	Supply voltage sensitivity $(\Delta V_{IO}/\Delta V_{CC})$	$V_{CC\pm} = \pm 2.5 \text{ to } \pm 15 \text{ V}$	25°C		30	150		30	150	μV/V
los	Short-circuit output current§		25°C	±10	±30	±45	±10	±30	±45	mA
ICC	Total supply current	No load, See Note 5	25°C		2.8	7		2.8	7	mA

[†] All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified. Full range for T_A is -40°C to 85°C for MC3303, and 0°C to 70°C for MC3403.

 $^{^{\}ddagger}$ The V_{ICR} limits are linked directly, volt-for-volt, to supply voltage; the positive limit is 2 V less than V_{CC+}.

[§] Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.

NOTE 5: V_{IO} , I_{IO} , I_{IB} , and I_{CC} are defined at $V_{O} = 0$ for MC3403 and $V_{O} = 7$ V for MC3303.

SLOS101A - FEBRUARY 1979 - REVISED MAY 1999

electrical characteristics, $V_{CC+} = 5 \text{ V}$, $V_{CC-} = 0 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONST	MC3303			MC3403			
	FARAIVIETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V _{IO}	Input offset voltage	V _O = 2.5 V			10		2	10	mV
IIO	Input offset current	V _O = 2.5 V			75		30	50	nA
I _{IB}	Input bias current	V _O = 2.5 V			-0.5		-0.2	-0.5	μΑ
	Peak output voltage swing [‡]	R _L = 10 kΩ	3.3	3.5		3.3	3.5		
VOM		$R_L = 10 \text{ k}\Omega,$ $V_{CC+} = 5 \text{ V to } 30 \text{ V}$	V _{CC+} -1.7			V _{CC+} -1.7			V
A _{VD}	Large-signal differential voltage amplification	$V_O = 1.7 \text{ V to } 3.3 \text{ V},$ $R_L = 2 \text{ k}\Omega$	20	200		20	200		V/mV
ksvs	Supply-voltage sensitivity $(\Delta V_{IO}/\Delta V_{CC\pm})$	$V_{CC\pm} = \pm 2.5 \text{ V to } \pm 15 \text{ V}$			150			150	μV/V
Icc	Supply current	$V_O = 2.5 \text{ V}$, No load		2.5	7		2.5	7	mA
V _{O1} /V _{O2}	Crosstalk attenuation	f = 1 kHz to 20 kHz		120			120		dB

[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified.

operating characteristics, V_{CC+} = 14 V, V_{CC-} = 0 V for MC3303, V_{CC±} = \pm 15 V for MC3403, T_A = 25°C, A_{VD} = 1 (unless otherwise noted)

	PARAMETER	TEST CONDITIONS					TYP	MAX	UNIT
SR	Slew rate at unity gain	$V_{I} = \pm 10 \text{ V},$	$C_L = 100 pF$,	$R_L = 2 k\Omega$,	See Figure 1		0.6		V/µs
t _r	Rise time						0.35		μs
t _f	Fall time	$\Delta V_O = 50 \text{ mV},$	$C_L = 100 pF$,	$R_L = 10 \text{ k}\Omega$,	See Figure 1		0.35		μs
	Overshoot factor						20%		
	Crossover distortion	$V_{I(PP)} = 30 \text{ mV},$	V _{OPP} = 2 V,	f = 10 kHz			1%		

PARAMETER MEASUREMENT INFORMATION

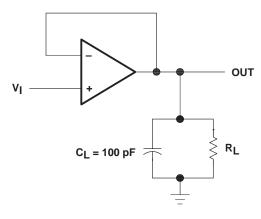


Figure 1. Unity-Gain Amplifier

[‡] Output will swing essentially to ground.

TYPICAL CHARACTERISTICS[†]

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE

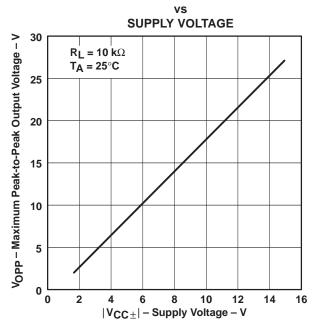


Figure 2

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE

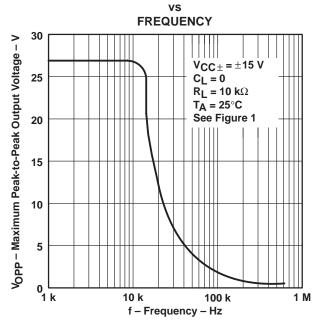


Figure 3

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION

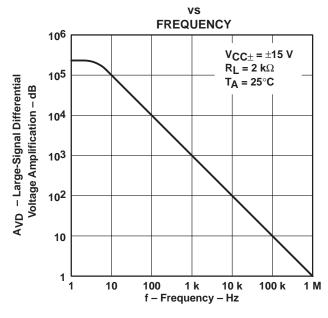


Figure 4

VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE

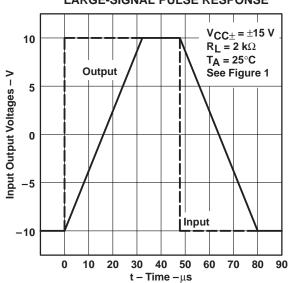
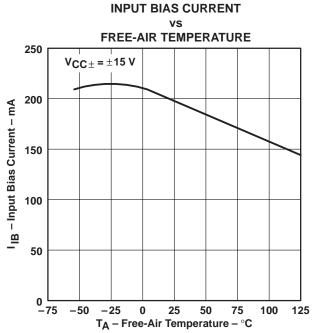



Figure 5

[†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

TYPICAL CHARACTERISTICS[†]

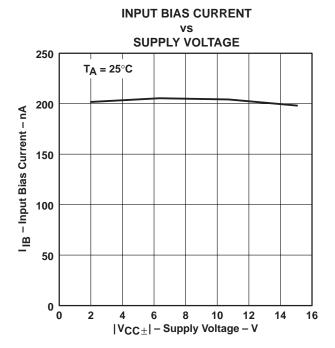


Figure 7

[†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated