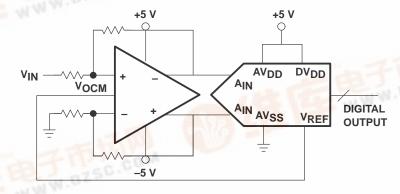
HIGH-SPEED DIFFERENTIAL-INPUT/DIFFERENTIAL-OUTPUT AMPLIFIERS

SLOS321 - MAY 2000

- Differential-Input/Differential-Output
 - Simple Single-Ended to Differential Conversion
 - Balanced Ouputs Reject Common-Mode Noise
- High Performance
 - 144 MHz -3 dB Bandwidth
 - 830 V/µs Slew Rate
 - -82 dB HD3 at 10 MHz
 - 9 nV/√Hz Input-Referred Noise
- Low-Power Supply Range
 - I_{CC} = 880 μ A in Shutdown Mode
- Wide Power Supply Range
 - V_{CC} = 5 V single supply to ±15 V

THS4150 D OR DGN PACKAGE (TOP VIEW) V_{IN-} PD 7 V_{OCM} L 1-V_{CC} +V_{CC} 6 V_{OUT+} V_{OUT}-THS4151 D OR DGN PACKAGE (TOP VIEW)] $\lor_{\mathsf{IN+}}$ I NC V_{ОСМ} [+V_{CC} -Vcc

description


The THS415x is one in a family of differential-input/differential-output devices fabricated using Texas Instruments' state-of-the-art BiCom I complementary bipolar process.

The THS415x consists of a true differential signal path from input to output. This results in excellent common-mode noise rejection and improved total harmonic distortion. Not only does the device provide balanced, differential outputs, but internal feedback reduces the effects of parametric differences in gain-setting components between sides.

Designed for high-performance, 12-bit applications, the THS415x has 144 MHz bandwidth, 830 V/µs slew rate, and –82 dB third harmonic distortion at 1 MHz. Combined with its differential outputs, these specifications make the THS415x ideal for driving high-performance analog-to-digital converters.

The THS415x also offers many advantages for improving system designs. Its differential outputs make single-ended to differential conversion simple and efficient. The V_{OCM} input provides easy level-shifting and, when driven by an ADC reference voltage, ensures that the ADC differential inputs are centered in its dynamic range.

typical ADC application circuits

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

THS4150, THS4151 HIGH-SPEED DIFFERENTIAL-INPUT/DIFFERENTIAL-OUTPUT AMPLIFIERS

SLOS321 - MAY 2000

description (continued)

Its inherent common-mode noise rejection makes the THS415x ideal for distributing critical signals across a printed-circuit board.

The THS415x is offered in a standard 8-pin SOIC package (D) and an 8-pin MSOP PowerPAD™ package (DGN). The low-power shutdown capability is offered as an option in the THS4150. The device operates over the industrial temperature range of −40°C to 85°C.

HIGH-SPEED xDSL LINE DRIVER/RECEIVER FAMILY

DEVICE	NUMBER OF CHANNELS	PACK TYF		SHUTDOWN
	CHANNELS	SOIC	MSOP	
THS4150	1	8	8	Х
THS4151	1	8	8	_

AVAILABLE OPTIONS

	PACKAGED DEVICES			
TA	SMALL OUTLINE (D)	MSOP PowerPAD™ (DGN)		
0°C to 70°C	THS4150CD THS4151CD	THS4150CDGN THS4151CDGN		
–40°C to 85°C	THS4150ID THS4151ID	THS4150IDGN THS4151IDGN		

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} - to V _{CC} +	±16.5 V
Input voltage, V _I	±V _{CC}
Output current, I _O	150 mA
Differential input voltage, V _{ID}	±4 V
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature, T _A :C suffix	0°C to 70°C
l suffix	–40°C to 85°C
Storage temperature, T _{stg}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 Inch) from case for 10 seconds	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{\scriptsize A}} \leq 25^{\circ}\mbox{\scriptsize C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
D	740 mW	6 mW/°C	470 mW	380 mW
DGN	1.71 mW	17.1 mW/°C	941 mW	685 mW

recommended operating conditions

		MIN	TYP N	ΛΑΧ	UNIT
Supply voltage, V _{CC} + and V _{CC} -		±2.5		±15	V
Operating free-air temperature, T _A	C suffix	0		70	°C
	I suffix	-40		85	°C

THS4150, THS4151 HIGH-SPEED DIFFERENTIAL-INPUT/DIFFERENTIAL-OUTPUT AMPLIFIERS

SLOS321 - MAY 2000

electrical characteristics, V_CC = 5 V, R_L = 800 Ω , T_A = 25°C (unless otherwise noted)

dynamic performance

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
BW	Small signal bandwidth (-3 dB)	Gain = −1		144		
SR	Slew rate	Gain = −1	830			V/μs
	Settling time to 0.1%	Step voltage = 2 V, Gain = -1			ns	
^l S	Settling time to 0.01%	Siep vollage = 2 v, Gall1 = -1		ns		

distortion performance

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
THD	Total harmonic distortion	f = 1 MHz				dBc
	Differential gain error	Ocio ONTO				
	Differential phase error	Gain = 2 NTSC, 40 IRE modulation				
	Spurious free dynamic range					dB
	Intermodulation distortion					dB
	Third-order intercept					dB

noise performance

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
٧n	Input voltage noise	f = 10 kHz		7.5		nV/√ Hz
In	Input current noise	f = 10 kHz		1.53		pA/√ Hz

dc performance

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Vos	Input offset voltage	T _A = 25°C				mV
	Offset drift					μV/°C
I _{IB}	Input bias current	T_{Δ} = full range		8.2		μΑ
los	Input offset current	TA = ruii range				nA
	Offset drift	1				nA/°C

input characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
CMRR	Common-mode refection ratio	V _{ICR} = 0 V to 5 V, T _A = full range				dB
VICR	Common-mode input voltage range			–4 to 4.5		V
R _I	Input resistance					MO
Cl	Input capacitance					pF
Ro	Output resistance	Open loop				0

output characteristics

	PARAMETER	TEST COM	NDITIONS	MIN	MIN TYP MAX -3.8 to 3.8		UNIT
	Output voltage swing		T _A = 25°C				V
IO	Output current				60		mA

THS4150, THS4151 HIGH-SPEED DIFFERENTIAL-INPUT/DIFFERENTIAL-OUTPUT AMPLIFIERS

SLOS321 - MAY 2000

electrical characteristics, V_{CC} = 5 V, R_L = 800 Ω , T_A = 25°C (unless otherwise noted) (continued)

power supply

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
V _{CC} Supply	0 1 1	Single supply	5	.,	
	Supply voltage range	Split supply	±15	V	
ICC	Quiescent current (per amplifier)	T _A = full range	20		mA
PSRR	Power supply rejection ratio	T _A = 25°C	89		dB
FORK		T _A = full range			uБ

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated