SLVS239 - SEPTEMBER 1999

The TPS5102 is a dual, high efficiency controller designed for notebook system power requirements. Under light load conditions, high efficiency is maintained as the controller switches from the PWM mode to the lower frequency Skip mode.

These two operating modes, along with the synchronous-rectifier drivers, dead-time, and very low quiescent current, allow power to be conserved and the battery life extended, under all load conditions.

The resistor-less current protection and fixed high-side driver voltage simplify the system design and reduce the external parts count. The wide input voltage range and adjustable output voltages allow flexibility for using the TPS5102 in notebook power supply applications.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLVS239 - SEPTEMBER 1999

functional block diagram

SLVS239 - SEPTEMBER 1999

AVAILABLE OPTIONS						
TA	PACKAGE	EVM				
	TSSOP(DBT)					
–40°C to 85°C	TPS5102IDBT	TPS5102EVM-135				
	TPS5102IDBTR					

Terminal Functions

TERMINAL			DECODIDION
NAME	NO.		DESCRIPTION
COMP	12	I/O	Voltage monitor comparator input
CT	5	I/O	External capacitor connection for switching frequency adjustment
FB1	2	0	CH1 error amp output
FB2	14	0	CH2 error amp output
GND	7		Control GND
INV1	1	I	CH1 inverting input
INV2	15	I	CH2 inverting input
LH1	30	I/O	CH1 boost capacitor connection
LH2	16	I/O	CH2 boost capacitor connection
LL1	28	I/O	CH1 boost circuit connection
LL2	18	I/O	CH2 boost circuit connection
OUT1_d	27	I/O	CH1 low-side gate-drive output
OUT2_d	19	0	CH2 low-side gate-drive output
OUT1_u	29	0	CH1 high-side drive output
OUT2_u	17	0	CH2 high-side drive output
OUTGND1	26		Output GND 1
OUTGND2	20		Output GND 2
PWM_SKIP	4	I	PWM/SKIP mode select L:PWM mode H:SKIP mode
REF	8	0	1.185-V reference voltage output
REG5V_IN	21	I	External 5-V input
R _T	6	I/O	External resistor connection for switching frequency adjustment
SOFTSTART1	3	I/O	External capacitor connection for CH1soft start timing.
SOFTSTART2	13	I/O	External capacitor connection for CH2 soft start timing.
STBY1	9	I	CH1 stand-by control
STBY2	10	I	CH2 stand-by control
TRIP2	23	I	External resistor connection for CH2 over current protection.
TRIP1	25	I	External resistor connection for CH1 over current protection.
Vcc	11		Supply voltage input
V _{ref} 5	22	0	5-V internal regulator output
VCC_CNTP	24	1	Supply voltage sense input

SLVS239 - SEPTEMBER 1999

detailed description

Vref (1.185 V)

The reference voltage is used to set the output voltage and the overvoltage protection (COMP).

Vref5 (5 V)

The internal linear voltage regulator is used for the high-side driver bootstrap voltage. Since the input voltage range is from 4.5 V to 25 V, this feature offers a fixed voltage for the bootstrap voltage greatly simplifying the drive design. It is also used for powering the low side driver. The tolerance is 6%.

5-V Switch

If the internal 5 V switch senses a 5-V input from REG5V_IN pin, the internal 5-V linear regulator will be disconnected from the MOSFET drivers. The external 5 V will be used for both the low-side driver and the high side bootstrap, thus increasing the efficiency.

PWM/SKIP

This pin is used to change between PWM and Skip mode. If the pin is lower than 0.5-V, the IC is in regular PWM mode; if a minimum 2-V is applied to this pin, the IC works in Skip mode. In light load condition (<0.2 A), the skip mode gives a short pulse to the low-side FET instead of a full pulse. By this control, switching frequency is lowered, reducing switching loss; also the output capacitor energy discharging through the output inductor and the low-side FET is prevented. Therefore, the IC can achieve high efficiency at light load conditions (< 0.2 A).

err-amp

Each channel has its own error amplifier to regulate the output voltage of the synchronous-buck converter. It is used in the PWM mode for the high output current condition (>0.2A). Voltage mode control is applied.

skip comparator

In Skip mode, each channel has its own hysteretic comparator to regulate the output voltage of the synchronous-buck converter. The hysteresis is set internally and typically at 8.5 mV. The delay from the comparator input to the driver output is typically 1.2 μ s.

low-side driver

The low-side driver is designed to drive low-Rds(on) n-channel MOSFETs. The maximum drive voltage is 5 V from Vref5. The current rating of the driver is typically 1 A, source and sink.

high-side driver

The high side driver is designed to drive low-Rds(on) n-channel MOSFETs. The current rating of the driver is 1 A, source and sink. When configured as a floating driver, the bias voltage to the driver is developed from Vref5, limiting the maximum drive voltage between OUT_u and LL to 5 V. The maximum voltage that can be applied between LHx and OUTGND is 30 V.

deadtime control

Deadtime prevents shoot-through current from flowing through the main power FETs during switching transitions by actively controlling the turn-on time of the MOSFETs drivers. The typical deadtime from low-side-driver-off to high-side-driver-on is 70 ns, and 85 ns from high-side-driver-off to low-side-driver-on.

SLVS239 - SEPTEMBER 1999

detailed description (continued)

current protection

Current protection is achieved by sensing the high-side power MOSFET drain-to-source voltage drop during on-time at VCC_CNTP and LL. An external resistor between Vin and TRIP pin in serial with the internal current source adjusts the current limit. When the voltage drop during the on-time is high enough, the current comparator triggers the current protection and the circuit is reset. The reset repeats until the over-current condition is removed.

COMP

COMP is an internal comparator used for any voltage protection such as the output under-voltage protection for notebook power applications. If the core voltage is lower than the setpoint, the comparator turns off both channels to prevent the notebook from damage.

SOFT1, SOFT2

Separate softstart terminals make it possible to set the start-up time of each output for any possibility.

STBY1, STBY2

Both channels can be switched into standby mode separately by grounding the STBY pin. The standby current is as low as 1 μ A.

ULVO

When the input voltage goes up to about 4 V, the IC is turned on, ready to function. When the input voltage is lower than the turn-on value, the IC is turned off. The typical hysteresis is 40 mV.

SLVS239 - SEPTEMBER 1999

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Supply voltage, Vcc (see Note 1)	0.3 V to 27 V
Input voltage, INV	\ldots -0.3 V to 7 V
SOFTSTART	\ldots -0.3 V to 7 V
СОМР	\ldots -0.3 V to 6 V
REG5_IN	\ldots -0.3 V to 6 V
STBY	\ldots -0.3 V to 15 V
Driver current	
TRIP	\ldots -0.3 V to 27 V
C _T	\ldots -0.3 V to 7 V
R _T	\ldots -0.3 V to 7 V
LL	\ldots -0.3 V to 27 V
LH	\ldots -0.3 V to 32 V
OUT_u	\ldots -0.3 V to 32 V
OUT_d	\ldots .0.3 V to 7 V
PWM/SKIP	\ldots .0.3 V to 7 V
VCC_Sense	\ldots -0.3 V to 27V
Power dissipation (T _A = 25°C)	
Operating temperature (T _A)	40°C to 85°C
Operating temperature (T _J)	40°C to 125°C
Storage temperature (T _{STG)}	55°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values are with respect to the network ground terminal.

- 2. This rating is specified at duty \leq 10% on output rise and fall each pulse. Each pulse width (rise and fall) for the peak current should not exceed 2 μ s.
- 3. See Dissipation Rating Table for free-air temperature range above 25°C.

DISSIPATION RATING TABLE

PACKAGE	$T_A \le 25^{\circ}C$	DERATING FACTOR	T _A = 85°C
	POWER RATING	ABOVE T _A = 25°C	POWER RATING
DBT	874 mW	6.993 mW/°C	454 mW

recommended operating conditions

		PARAMETERS	MIN	NOM	MAX	UNIT
Supply voltage, Vcc			4.5		25	V
		INV1/2 CT RT, PWM/SKIP, SOFTSTART			6	
	5 V_IN	-0.1		5.5		
Input voltage, v		STBY1, STBY2			12	v
Supply voltage, Vcc Input voltage, VI Oscillator frequency		TRIP1/2 VCC_SENSE	-0.1		25	
	CT			100		pF
Oscillator frequency	R _T			82		kΩ
	fosc	PWM		200		KHz
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				°C		

SLVS239 - SEPTEMBER 1999

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 7 V$ (unless otherwise noted)

reference voltage

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Vref	Reference voltage	$T_A = 25^{\circ}C$, $I_{vref} = 50 \ \mu A$	1.167	1.185	1.203	v
		$I_{vref} = 50 \ \mu A$	1.155		1.215	
Regin	Line regulation	Vcc = 4.5, 25V, I = 50 μA		0.2	12	mV
Regl	Load regulation	I = 0.1 μA to 1 mA		0.5	10	mV

quiescent current

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
lcc	Operating current without switching	Both STBY > 2.5 V, No switching, Vin = 4.5 – 25 V		0.6	1.5	mA
lccs	Stand-by current	Both STBY < 0.5 V, Vin = 4.5 – 25 V		1	1000	nA

oscillator

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
fosc	Frequency	PWM operation			500	kHz
R _T	Timing resistor		56			kΩ
fdv	fosc change	Vcc = 4.5 V to 25 V		0.1%		
fdt		$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$		2%		
		DC, includes internal comparator error	1	1.1	1.2	N/
VoscH H-	H-level output voltage	Fosc = 200 kHz, Includes internal comparator error		1.17		V
		Includes internal comparator error	0.4	0.5	0.6	V
voscL	L-level output voltage	Fosc = 200 kHz, Includes internal comparator error		0.43		V

error amp

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Vio	Input offset voltage	$T_A = 25^{\circ}C$		±2	±10	mV
Av	Open-loop voltage gain		50			dB
GB	Unity-gain bandwidth			0.8		MHz
Isnk	Output sink current	Vo = 0.4 V	30	45		μA
Isrc	Output source current	Vo = 1 V		300		μA

skip comparator

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Vhys†	Hysteresis window		6	9.5	13	mV
Vhoff	Offset voltage			2		mV
Ihbias	Bias current			10		pА
T _{LHT}	Propagation delay [‡] from INV to OUTxU	TTL input signal		0.7		μs
T _{LH}		10 mV overdrive on hysteresis band signal		1.2		μs

[†] Vhys is assured by design.

[‡] The total delay in the table includes the driver delay.

SLVS239 - SEPTEMBER 1999

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 7 V$ (unless otherwise noted) (continued)

driver deadtime

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
TDRVLH	Low side to high side			70		nS
TDRVHL	High side to low side			85		nS

standby

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VIH	H-level input voltage	STBY1, STBY2	2.5			V
VIL	L-level input voltage				0.5	v
T _{turnon}	Propagation delay			1.5		
T _{turnoff}	Propagation delay			1.8		μs

5V regulator

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Vo	Output voltage	I = 10 mA	4.7		5.3	V
Regin	Line regulation	Vcc = 5.5 V, 25 V, I = 10 mA			20	mV
Regl	Load regulation	I = 1 V, 10 mA, Vcc = 5.5 V			40	mV
los	Short-circuit output current	Vref = 0 V		80		mA

5-V internal switch

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{TLH}	Throshold voltage		4.2		4.8	V
VTHL	Theshold voltage		4.1		4.7	V
V _{hys}	Hysteresis		30		150	mV

UVLO

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{TLH}	Throshold voltage		3.7		4.2	V
VTHL	Thieshold voltage		3.6		4.1	V
V _{hys}	Hysteresis		10	40	150	mV

current limit

PARAMETER	TEST CONDITIONS		TYP	MAX	UNIT	
Internal ourrent course	PWM mode	10	15	20	<u> </u>	
	Skip mode	3	5	7	μΑ	
Input offset voltage			2.5		mV	

driver output

PARAMETER	TEST CONDITIONS		TYP	MAX	UNIT
OUT_u sink current	$V_{0} = 3 V_{0}$	0.5	1.2		٨
OUT_d sink current	Vo = 3 V		1.2		A
OUT_u source current	$\lambda = 2 \lambda$	-1	-1.7		٨
OUT_d source current	v0 = 3 v	-1	-1.5		A

SLVS239 - SEPTEMBER 1999

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 7 V (unless otherwise noted) (continued)

softstart

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
ICTRL	Soft-start current		1.8	2.5	3	μA
	Maximum discharge current			0.92		mA
VTLH	Threshold voltage (akin mode)		3.4	3.9	4.7	V
VTHL	Threshold voltage (skip mode)		1.8	2.6	3.4	v

output voltage protection (COMP)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Threshold voltage		0.9	1.1	1.3	V
Progagation delay [†] , 50% duty cycle, No capacitor on COMP or OUT_u pin, Frequency = 200 kHz	Turnon		900		ns
	Turnoff (with channel on)		400		ns

[†] The delay time in the table includes the driver delay.

PWM/SKIP

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Threshold	High to low			0.5	V
Infestiola	Low to high	2			v
Delay	High to low		550		20
	Low to high		400		115

SLVS239 - SEPTEMBER 1999

TYPICAL CHARACTERISTICS

SLVS239 - SEPTEMBER 1999

TYPICAL CHARACTERISTICS

SLVS239 - SEPTEMBER 1999

TYPICAL CHARACTERISTICS

SLVS239 - SEPTEMBER 1999

TYPICAL CHARACTERISTICS

timing diagram

SLVS239 - SEPTEMBER 1999

APPLICATION INFORMATION

The design shown in this application report is a reference design for notebook applications. An evaluation module (EVM), TPS5102EVM-135 (SLVP135), is available for customer testing and evaluation. The intent is to allow a customer to fully evaluate the given design using the plug-in EVM supply shown here. For subsequent customer board revisions, the EVM design can be copied onto the users' PCB to shorten design cycle.

The following key design procedures will aid in the design of the notebook power supply using the TPS5102:

Vin	lin	Vo1	lo1	Vo2	lo2
6 V to 15 V	6 A	3.3 V	4 A	5 V	4 A
16 V to 25 V		3.3 V	2.5 A	5 V	2.5 A

output voltage setpoint calculation

The output voltage is set by the reference voltage and the voltage divider. In the TPS5102, the reference voltage is 1.185-V, and the divider is composed of two resistors in the EVM design that are R4 and R5, or R14 and R15. The equation for the setpoint is:

$$R2 = \frac{R1 \times Vr}{Vo - Vr}$$

Where R1 is the top resistor ($k\Omega$) (R4 or R15); R2 is the bottom resistor ($k\Omega$) (R5 or R14); Vo is the required output voltage (V); Vr is the reference voltage (1.185 V in TPS5102).

Example: R1 = 1 k Ω ; Vr = 1.185 V; Vo = 3.3 V, then R2 = 560 Ω .

Some of the most popular output voltage setpoints are calculated in the table below:

Vo	1.3 V	1.5 V	1.8 V	2.5 V	3.3 V	5 V
R1 (top) (kΩ)	1 V	1 V	1 V	1 V	1 V	1 V
R2 (bottom) (kΩ)	10 V	3.7 V	1.9 V	0.9 V	0.56 V	0.31 V

SLVS239 - SEPTEMBER 1999

APPLICATION INFORMATION

output voltage setpoint calculation (continued)

If a higher precision resistor is used, the voltage setup can be more accurate.

In some applications, the output voltage is required to be lower than the reference voltage. With a few extra components, the lower voltage can be easily achieved. The drawing below shows the method.

In the schematic, the Rz1, the Rz2, and the zener are the extra components. Rz1 is used to give the zener enough current to build up the zener voltage. The zener voltage is added to INV through Rz2. Therefore, the voltage on the INV is still equal to the IC internal voltage (1.185 V) even if the output voltage is regulated at a lower setpoint. The equation for setting up the output voltage is shown below:

$$Rz 2 = \frac{(Vz - Vr)}{\frac{(Vr - Vo)}{Rtop} + \frac{Vr}{Rbtm}}$$

When Rz2 is the adjusting resistor for low output voltage; Vz is the zener voltage; Vr is the internal reference voltage; Rtop is the resistor of the voltage sensing network; Rbtm is the bottom resistor of the sensing network;V_O is the required output voltage setpoint.

Example: Assuming the required output voltage setpoint is $V_0 = 0.8 \text{ V}$, $V_Z = 5 \text{ V}$; Rtop = 1 k Ω ; Rbottom = 1 k Ω , Then the Rz2 = 2.43 k Ω .

output inductor ripple current

The output inductor current ripple can affect not only the efficiency, but also the output voltage ripple. The equation is exhibited below:

$$\textit{Iripple} = \frac{\textit{Vin} - \textit{Vout} - \textit{Iout} \times (\textit{Rdson} + \textit{R}_{\textit{L}})}{\textit{Lout}} \times \textit{D} \times \textit{Ts}$$

Where *Iripple* is the peak-to-peak ripple current (A) through the inductor; *Vin* is the input voltage (V); *Vout* is the output voltage (V); *Iout* is the output current; *Rdson* is the on-time resistance of MOSFET (Ω); *D* is the duty cycle; and *Ts* is the switching cycle (S). From the equation, it can be seen that the current ripple can be adjusted by changing the output inductor value.

Example: Vin = 5 V; Vout = 1.8 V; Iout = 5 A; Rdson = 10 m Ω ; RL = 5 m Ω ; D = 0.36; Ts = 10 μ S; Lout = 6 μ H Then, the ripple Iripple = 2 A.

SLVS239 - SEPTEMBER 1999

APPLICATION INFORMATION

output capacitor RMS current

Assuming the inductor ripple current totally goes through the output capacitor to ground, the RMS current in the output capacitor can be calculated as:

lorms = $\frac{\Delta I}{\sqrt{12}}$

Where *lo(rms)* is the maximum RMS current in the output capacitor (A); ΔI is the peak-to-peak inductor ripple current (A).

Example: $\Delta I = 2 \text{ A}$, so lo(rms) = 0.58 A

input capacitor RMS current

Assuming the input ripple current totally goes into the input capacitor to the power ground, the RMS current in the input capacitor can be calculated as:

$$lirms = \sqrt{lo^2 \times D \times (1-D) + \frac{1}{12}D \times lripple^2}$$

Where *li(rms*) is the input RMS current in the input capacitor (A); *lo* is the output current (A); Iripple is the peak-to-peak output inductor ripple current; *D* is the duty cycle. From the equation, it can be seen that the highest input RMS current usually occurs at the lowest input voltage, so it is the worst case design for input capacitor ripple current.

Example: Io = 5 A; D = 0.36; Iripple = 2 A,

Then, li(rms) = 2.42 A

soft-start

The soft-start timing can be adjusted by selecting the soft-start capacitor value. The equation is

 $C_{soft} = 2 \times T_{soft}$

Where C_{soft} is the soft-start capacitance (μ F) (C9 or C13 in EVM design); T_{soft} is the start-up time (S).

Example: Tsoft = 5 mS, so Csoft = 0.01 μ F.

SLVS239 - SEPTEMBER 1999

APPLICATION INFORMATION

current protection

The current limit in TPS5102 on each channel is set using an internal current source and an external resistor (R18 or R19). The sensed high side MOSFET drain-to-source voltage drop is compared to the set point, if the voltage drop exceeds the limit, the internal oscillator is activated, and it continuously reset the current limit until the over-current condition is removed. The equation below should be used for calculating the external resistor value for current protection setpoint:

$$Rcl = \frac{Rds(on) \times (Itrip + Iind(p-p)/2)}{0.000015}$$

In skip mode,

$$Rcl = \frac{Rds(on) \times (Itrip + Iind(p-p)/2)}{0.000005}$$

Where Rcl is the external current limit resistor (R10 or R11); Rds(on) is the high side MOSFET (Q1 or Q3) on-time resistance. Itrip is the required current limit; lind(p-p) is the peak-to-peak output inductor current.

Example for voltage mode: $Rds(on) = 10 m\Omega$, Itrip = 5 A, Iind = 2 A, so $Rcl = 4 k\Omega$.

loop-gain compensation

Voltage mode control is used in this controller for the output voltage regulation. To achieve fast, stabilized control, two parts are discussed in this section: the power stage small signal modeling and the compensation circuit design.

For the buck converter, the small signal modeling circuit is shown below:

From this equivalent circuit, several control transfer functions can be derived: input-to-output, output impedance, and control-to-output. Typically the control-to-output transfer function is used for the feedback control design.

Assuming Rc and RL are much smaller than R, the simplified small signal control-to-output transfer function is:

$$Vod = \frac{\bigwedge^{}_{Vo}}{\stackrel{}_{d}} = \frac{(1 + sCRc)}{1 + s\left[C \times \left(Rc + R_{L}\right) + \frac{L}{R}\right] + s^{2}LC}$$

Where C is the output capacitance; Rc is the equivalent serial resistance (ESR) in the output capacitor; L is the output inductor; RL is the equivalent serial resistance (DCR) in the output inductor; R is the load resistance.

SLVS239 - SEPTEMBER 1999

APPLICATION INFORMATION

loop-gain compensation (continued)

To achieve fast transient response and the better output voltage regulation, a compensation circuit is added to improve the feedback control. The whole system is shown:

The typical compensation circuit used as an option in the EVM design is a part of the output feedback circuit. The circuitry is displayed below:

This circuit is composed of one integrator, two poles, and two zeros:

Assuming R1 << R2 and C2 << C3, the equation is:

$$Comp = \frac{(1 + sC3R4) \times (1 + sC2R2)}{sC3R2(1 + sC2R4) (1 + sC1R1)}$$

Therefore,

Pole1 =
$$\frac{1}{2\pi C1R1}$$
Zero1 = $\frac{1}{2\pi C2R2}$ Pole2 = $\frac{1}{2\pi C2R4}$ Zero2 = $\frac{1}{2\pi C3R4}$ Integrator = $\frac{1}{2\pi C3R2}$

A simplified version used in the EVM design is exhibited below:

SLVS239 - SEPTEMBER 1999

APPLICATION INFORMATION

loop-gain compensation (continued)

Assuming C2 << C3, the equation is:

$$Comp = \frac{(1 + sC3R4)}{sC3R2(1 + sC2R4)}$$

There is one pole, one zero and one integrator:

$$Zero = \frac{1}{2\pi C3R4} \qquad Integrator = \frac{1}{2\pi fC3R2} \qquad Pole = \frac{1}{2\pi C2R4}$$

The loop-gain concept is used to design a stable and fast feedback control. The loop-gain equation is derived by the control-to-output transfer function times the compensation:

$$Loop-gain = Vod \times Comp$$

The amplitude and the phase of this equation can be drawn with software such as MathCad. In turn, the stability can be easily designed by adjusting the compensation parameters. The sample bode plot is shown below to explain the phase margin, gain margin, and the crossover frequency.

The gain is drawn as 20 log (loop-gain), and the phase is in degrees. To explain them clearer, 180 degrees is added to the phase, so that the gain and phase share the same zero.

The crossover frequency is the point at which the gain curve touches zero. The higher this frequency, the faster the transient response, since the transient recovery time is 1/(crossover frequency). The phase is the phase margin. The phase margin should be at least 60 degrees to cover all changes such as temperature. The gain margin is the gap between the gain curve and the zero when the phase curve touches zero. This margin should be at least 20 dB to guarantee stability over all conditions.

SLVS239 - SEPTEMBER 1999

APPLICATION INFORMATION

synchronization

Some applications require switching clock synchronization. There are two methods that can be used for synchronization: the triangle wave synchronization and the square wave synchronization.

The triangle wave synchronization is displayed below:

It can be seen that both Rt and Ct are removed from the circuit. Therefore, two components are saved. This method is good for the synchronization between two controllers. If the controller needs to be synchronized with a digital circuit such as DSP, the square-type clock signal is usually used. The configuration exhibited below is for this type of application:

SLVS239 - SEPTEMBER 1999

APPLICATION INFORMATION

synchronization (continued)

An external resistor is added into the circuit, but Rt is still removed. Ct is kept to be a part of RC circuit generating triangle waveform for the controller. Assuming the peak value of the square is known, the resistor and the capacitor can be adjusted to achieve the correct peak-to-peak value and the offset value.

layout guidelines

Good power supply results will only occur when care is given to proper design and layout. Layout will affect noise pickup and generation and can cause a good design to perform with less than expected results. With a range of currents from milliamps to tens or even hundreds of amps, good power supply layout is much more difficult than most general PCB designs. The general design should proceed from the switching node to the output, then back to the driver section and, finally, parallel the low-level components. Below are several specific points to consider *before* the layout of a TPS5102 design begins.

- All sensitive analog components should be referenced to ANAGND. These include components connected to Vref5, Vref, INV, LH, and COMP.
- Analog ground and drive ground should be isolated as much as possible. Ideally, analog ground will connect to the ground side of the bulk storage capacitors on V_O, and drive ground will connect to the main ground plane close to the source of the low-side FET.
- Connections from the drivers to the gate of the power FETs should be as short and wide as possible to reduce stray inductance. This becomes more critical if external gate resistors are not being used.
- The bypass capacitor for V_{CC} should be placed close to the TPS5102.
- When configuring the high-side driver as a floating driver, the connection from LL to the power FETs should be as short and as wide as possible.
- When configuring the high-side driver as a floating driver, the bootstrap capacitor (connected from LH to LL) should be placed close to the TPS5102.
- When configuring the high-side driver as a ground-referenced driver, LL should be connected to DRVGND.
- The bulk storage capacitors across V_{In} should be placed close to the power FETS. High-frequency bypass
 capacitors should be placed in parallel with the bulk capacitors and connected close to the drain of the
 high-side FET and to the source of the low-side FET.
- High-frequency bypass capacitors should be placed across the bulk storage capacitors on V_O.
- LH and LL should be connected very close to the drain and source, respectively, of the high-side FET. LH and LL should be routed very close to each other to minimize differential-mode noise coupling to these traces.
- The output voltage sensing trace should be isolated by either ground trace or Vcc trace.

SLVS239 - SEPTEMBER 1999

APPLICATION INFORMATION

SLVS239 - SEPTEMBER 1999

APPLICATION INFORMATION

SLVS239 - SEPTEMBER 1999

APPLICATION INFORMATION

Figure 23

SLVS239 - SEPTEMBER 1999

APPLICATION INFORMATION

Table 1. Bill of Materials

REF.	PN	DESCRIPTION	MANUFACTURER	SIZE
C1	RV-35V221MH10-R	Capacitor, electrolytic, 220 μF, 35 V	ELNA	10x10mm
C1 [†] opt	10TPB220M	Capacitor, POSCAP, 220 μF, 10 V	Sanyo	7.3x4.3mm
C2	GMK325F106ZH	Capacitor, ceramic, 10 μF, 35 V	Taiyo Yuden	1210
C3	GMK325F106ZH	Capacitor, ceramic, 10 µF, 35 V	Taiyo Yuden	1210
C4	4TPB470M	Capacitor, POSCAP, 470 µF, 4 V	Sanyo	7.3x4.3mm
C5	10TPB220M	Capacitor, POSCAP, 220 µF, 10 V	Sanyo	7.3x4.3mm
C5 [†] opt	6TPB330M	Capacitor, POSCAP, 330 µF, 6.3 V	Sanyo	7.3x4.3mm
C6†	Standard	Open, capacitor, ceramic, 0.22 µF, 16 V		805
C7	Standard	Capacitor, ceramic, 0,01 µF, 16 V		805
C8	Standard	Capacitor, ceramic, 220 pF, 16 V		805
C9	Standard	Capacitor, ceramic, 0.01 µF, 16 V		805
C10	Standard	Capacitor, ceramic, 100 pF, 16 V		805
C11	Standard	Capacitor, ceramic, 1 µF, 16 V	muRata	805
C12	GMK316F225ZG	Capacitor, ceramic, 2.2 µF, 35 V	Taiyo Yuden	1206
C13	Standard	Capacitor, ceramic, 0.01 µF, 16 V		805
C14	Standard	Capacitor, ceramic, 220 pF, 16 V		805
C15	Standard	Capacitor, ceramic, 0.1 μF, 16 V		805
C16 [†]	Standard	Open, capacitor, ceramic, 0.1 µF, 16 V		805
C17	GMK316F225ZG	Capacitor, ceramic, 2.2 μF, 35 V	Taiyo Yuden	1206
C18	Standard	Open		805
C19	Standard	Open		805
C20	GMK325F106ZH	Capacitor, ceramic, 10 µF, 35 V	Taiyo Yuden	1210
C21	GMK316F225ZG	Capacitor, ceramic, 2.2 µF, 35 V	Taiyo Yuden	1206
C22 [†]				7.3x4.3mm
C23 [†]				7.3x4.3mm
D1	MBRS340T3	Diode, Schottky, 40 V, 3 A	Motorola	SMC
D2	MBRS340T3	Diode, Schottky, 40 V, 3 A	Motorola	SMC
D3	SD103-AWDICT-ND	Diode, Schottky, 40 V, 200 mA	Digikey	3.5x1.5mm
D4	SD103-AWDICT-ND	Diode, Schottky, 40 V, 200 mA	Digikey	3.5x1.5mm
L1	DO3316P-682	Inductor, 6.8 µH, 4.4 A	Coilcraft	0.5x0.37in
L2	DO3316P-682	Inductor, 6.8 µH, 4.4 A	Coilcraft	0.5x0.37in
J1-J16	CA26DA-D36W-OFC	Edge connector, surface mount, 0.040" board, 0.090" standoff	NAS Interplex	0.040in
JP1	S1132-2-ND	Header, straight, 2-pin, 0.1 ctrs, 0.3" pins	Sullins	DigiKey # 1132-2-ND
JP1 shunt	S1132-14-ND	Shunt, jumper, 0.1"	Sullins	DigiKey # 929950-00-ND
JP2	S1132-14-ND	Header, straight, 2-pin, 0.1 ctrs, 0.3" pins	Sullins	DigiKey # 1132-2-ND
R1	Standard	Resistor, 5.1 Ω, 5%		805
R2	Standard	Resistor, 5.1 Ω , 5%		805
R3†	Standard	Open		805
R4	Standard	Resistor, 1.21 kΩ, 1%		805
R5	Standard	Resistor, 680 Ω, 1%		805
R6	Standard	Resistor, 5.1 kΩ, 5%		805
R8	Standard	Resistor, 1 kΩ, 5%		805
† Option table)			

SLVS239 - SEPTEMBER 1999

APPLICATION INFORMATION

Table 1. Bill of Materials (continued)

REF.	PN	DESCRIPTION	MANUFACTURER	SIZE
R9	Standard	Resistor, 82 kΩ, 5%		805
R10	Standard	Resistor, 1 kΩ, 5%		805
R11	Standard	Resistor, 0 Ω , 5%		805
R12	Standard	Resistor, 1 kΩ, 5%		805
R13	Standard	Reistor, 1 kΩ, 5%		805
R14	Standard	Resistor, 310 kΩ, 1%		805
R15	Standard	Resistor, 1 kΩ, 1%		805
R16 [†]	Standard	Open resistor, 5.1 Ω, 5%		805
R17	Standard	Resister, 15 Ω, 5%		805
R18	Standard	Resistor, 7.5 kΩ, 5%		805
R19	Standard	Resistor, 7.5 kΩ, 5%		805
R20	Standard	Resistor, 15 Ω, 5%		805
R21	Standard	Open		805
Q1	Si4410DY	Transistor, MOSFET, n-ch, 30 V, 10 A, 13 mΩ,	Siliconix	SO-8
Q2	Si4410DY	Transistor, MOSFET, n-ch, 30 V, 10 A, 13 mΩ,	Siliconix	SO-8
Q3	Si4410DY	Transistor, MOSFET, n-ch, 30 V, 10 A, 13 mΩ,	Siliconix	SO-8
Q4	Si4410DY	Transistor, MOSFET, n-ch, 30 V, 10 A, 13 mΩ,	Siliconix	SO-8
U1	TPS5102	IC, Dual Controller	TI	TSSOP

[†]Option table

This EVM is designed to cover as many applications as possible. For some more specific applications, the circuit can be simpler. The table below gives some recommendations.

Table 2. EVM Application Recommendations

5V INPUT VOLTAGE	<3–A OUTPUT CURRENT	DIODE VERSION				
Change C1 to low profile capacitor	Change Q1/Q2 and Q3/Q4 to dual pack MOS-	Remove Q2 and Q4 to reduce the cost.				
Sanyo 10TPB220Μ (220 μF, 10 V)	FET, IRF7311 to reduce the cost.					
Or 6TPB330M (330 μF, 6.3 V)						
Remove R12						

Table 3. Vendor and Source Information

MATERIAL	SOURCE	PART NUMBER	DISTRIBUTORS
MOSFETS (Q1–Q4)	In EVM Design	Si4410DY (SILICONIX)	Local Distributor
	Second Source	IRF7811 (International Rectifier)	
INPUT CAPACITORS (C1)	In EVM Design	RV-35V221MH10-R (ELNA)	Bell Microproducts
			972–783–4191
	Second Source	35CV330AX/GX (Sanyo)	870-633-5030
		UUR1V221MNR1GS (Nichicon)	Future Electronics (Local Office)
MAIN DIODES (D1 – D2)	In EVM Design	MBRS340T3 (Motorola)	Local Distributors
	Second Source	U3FWJ44N (Toshiba)	Local Distributors
INDUCTORS (L1 – L2)	In EVM Design	DO3316P-682 (Coilcraft)	972–248-3575
	Second Source	CTDO3316P–682 (Inductor Warehouse)	800–533–8295
CERAMIC CAPACITORS	IN EVM Design	GMK325F106ZH	SMEC
(C2, C3) (C12, C17, C21)		GMK316F225ZG	512-331-1877
		(Taiyo Yuden)	
	Taiyo Yuden, Representative		e-mail: mike@millsales.com

SLVS239 - SEPTEMBER 1999

APPLICATION INFORMATION

Top Layer

Bottom Layer (Top View)

Top Assembly

SLVS239 - SEPTEMBER 1999

APPLICATION INFORMATION

NOTE: All wire pairs should be twisted.

Test Setup

SLVS239 - SEPTEMBER 1999

APPLICATION INFORMATION

High current applications are described in table. The values are recommendations based on actual test circuits. Many variations are possible based on the requirements of the user. Performance of teh circuit is dependent upon the layout rather than the on specific components, if the device parameters are not exceeded. The power stage, having the highest current levels and greatest dv/dt rates, should be given the most attention, as both the supply and load can be severly affected by the power levels and edge rates.

REFERENCE DESIGNATIONS	FUNCTION	8-A OUTPUT	12-A OUTPUT	16-A OUTPUT
C1	Input Bulk Capacitor	2x ELNA RV-35V221MH10-R 220 μF, 35 V	3x ELNA RV-35V221MH10-R 220 μF, 35 V	4x ELNA RV-35V221MH10-R 220 μF, 35 V
C2 (C3)	Input Bypass Capacitor	2x Taiyo Yuden GMK325F106ZH 10 μF, 35 V	3x Taiyo Yuden GMK325F106ZH 10 μF, 35 V	4x Taiyo Yuden GMK325F106ZH 10 μF, 35 V
L1 (L2)	Output Filter Indicator	Coiltronics UP3B-2R2 2.2 µH, 9.2 A	Coiltronics UP4B-1R5 1.5 μH, 13.4 A	MicorMetals T68-8/90 Core w/7T, #16 1.0 μH, 25 A
C4 (C22)	Output Filter Capacitor	2x Sanyo 4TPB470M 470 μF, 4 V	3x Sanyo 4TPB470M 470 μF, 4 V	4x Sanyo 4TPB470M 470 μF, 4 V
C5 (C23)	Output Filter Capacitor	2x Sanyo 6TPB330M 330 μF, 6.3 V	3x Sanyo 6TPB330M 330 μF, 6.3 V	4x Sanyo 6TPB330M 330 μF, 6.3 V
Q1 (Q3)	Power Switch	2x Siliconix Si4410DY 30 V, 10 A, 13 mΩ	3x Siliconix Si4410DY 30 V, 10 A, 13 mΩ	4x Siliconix Si4410DY 30 V, 10 A, 13 mΩ
Q2 (Q4)	Power Switch	2x Siliconix Si4410DY 30 V, 10 A, 13 mΩ	3x Siliconix Si4410DY 30 V, 10 A, 13 mΩ	4x Siliconix Si4410DY 30 V, 10 A, 13 mΩ
R17 (R20)	Gate Drive Resistor	7 Ω	5 Ω	4 Ω
R18 (R19)	Current Limit Resistor	10 kΩ	15 kΩ	20 kΩ
Switching Frequency		200 kHz	150 kHz	100 kHz

Table 4. High Current Applications

SLVS239 - SEPTEMBER 1999

DBT (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

30 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated