查询PCI1250A供应商

捷多邦,专业PCB打样工厂,24小时加急出货 PCI1250A PC CARD CONTROLLER

XCPS014 - DECEMBER 1997

- Peripheral Component Interconnect (PCI)
 Power Management Compliant
- ACPI 1.0 Compliant
- Packaged in 256-Pin BGA
- PCI Local Bus Specification Revision 2.1 Compliant
- 1995 PC Card[™] Standard Compliant
- 3.3-V Core Logic With Universal PCI Interfaces Compatible With 3.3-V and 5-V PCI Signaling Environments
- Mix-and-Match 5-V/3.3-V PC Card16 Cards and 3.3-V CardBus Cards
- Supports Two PC Card or CardBus Slots With Hot Insertion and Removal
- Uses Serial Interface to TI[™] TPS2206 Dual Power Switch
- Supports Burst Transfers to Maximize Data Throughput on Both PCI Buses
- Supports Serialized Interrupt request (IRQ) With PCI Interrupts
- 8-Way Legacy IRQ Multiplexing
- System Interrupts Can Be Programmed as PCI Style or Industry Standard Archeticture (ISA-IRQ) Style
- ISA-IRQ Interrupts Can Be Serialized Onto a Single IRQ Serial (IRQSER) Pin
- EEPROM Interface for Loading Subsystem
 ID and Subsystem Vendor ID
- Pipelined Architecture Allows Greater Than 130M-Bytes-Per-Second Throughput From CardBus to PCI and From PCI to CardBus

- Supports Zoom Video With Internal Buffering
- Programmable Output Select for CLKRUN
- Four General Purpose I/Os
- Multifunction PCI Device With Separate Configuration Space for Each Socket
- Five PCI Memory Windows and Two I/O Windows Available for Each PC Card16 Socket
- Two I/O Windows and Two Memory Windows Available to Each CardBus Socket
- Exchangeable Card Architecture (ExCA) Compatible Registers Are Mappable in Memory and I/O Space
- Supports Distributed DMA (DDMA) and PC/PCI DMA
- Intel[™] 82365SL-DF Register Compatible
- Supports 16-Bit DMA on Both PC Card Sockets
- Supports Ring Indicate, SUSPEND, PCI CLKRUN, and CardBus CCLKRUN
- Advanced Submicron, Low-Power CMOS
 Technology
- Provides VGA/Palette Memory and I/O and Subtractive Decoding Options
- LED Activity Pins
- Supports PCI Bus Lock (LOCK)
- For the Complete Data Sheet for PCI1250A, Please See Literature #SCPS014B

Table of Contents

Table of	Contents
Description 2	PCI Clock/Reset Timing Requirements
System Block Diagram 3	PCI Timing Requirements 19
Terminal Assignments 4	Parameter Measurement Information
Terminal Functions 5	PCI Bus Parameter Measurement Information
Absolute Maximum Ratings 16	PC Card Cycle Timing 22
Recommended Operating Conditions	Mechanical Data
Electrical Characteristics 18	97// (9 - 1

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Intel is a trademark of Intel Corporation. PC Card is a trademark of Personal Computer Memory Card International Association (PCMCIA).

IRCOUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1997, Texas Instruments Incorporated

XCPS014 – DECEMBER 1997

description

The TI PCI1250A is a high-performance PC Card controller with a 32-bit PCI interface. The device supports two independent PC Card sockets compliant with the 1995 PC Card Standard. The PCI1250A provides a rich feature set that makes it the best choice for bridging between PCI and PC Cards in both notebook and desktop computers. The 1995 PC Card Standard retains the 16-bit PC Card specification defined in PCMCIA Release 2.1, and defines the new 32-bit PC Card, CardBus, capable of full 32-bit data transfers at 33 MHz. The PCI1250A supports any combination of 16-bit and CardBus PC Cards in the two sockets, powered at 5 V or 3.3 V, as required.

The PCI1250A is compliant with the latest PCI Bus Power Management Specification. It is also compliant with the PCI Local Bus Specification 2.1, and its PCI interface can act as either a PCI master device or a PCI slave device. The PCI bus mastering is initiated during 16-bit PC Card direct memory access (DMA) transfers or CardBus PC Card bridging transactions.

Multiple system-interrupt signaling options are provided and they include:

- Parallel PCI interrupts
- Parallel ISA interrupts
- Serialized ISA interrupts
- Serialized ISA and PCI interrupts

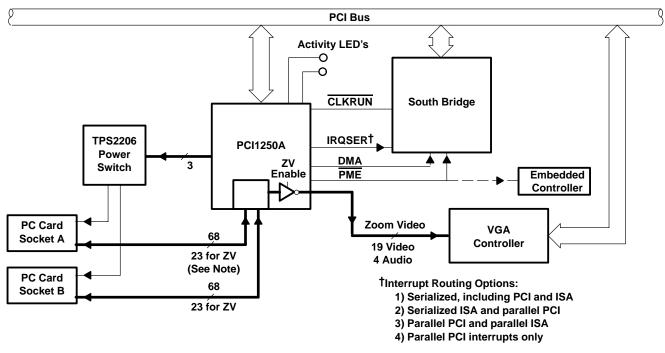
Additionally, general-purpose inputs and outputs are provided for the board designer to implement sideband functions.

All card signals are internally buffered to allow hot insertion and removal without external buffering. The PCI1250A is register compatible with the Intel 82365SL-DF ExCA controller. The PCI1250A internal data path logic allows the host to access 8-, 16-, and 32-bit cards using full 32-bit PCI cycles for maximum performance. Independent buffering and a pipeline architecture provide an unsurpassed performance level with sustained bursting. The PCI1250A can also be programmed to accept fast posted writes to improve system-bus utilization.

The PCI1250A provides an internally buffered zoom video (ZV) path. This reduces the design effort of PC board manufacturers to add a ZV-compatible solution and guarantees compliance with the CardBus loading specifications. Many other features are designed into the PCI1250A, such as socket activity light-emitting diode (LED) outputs, and are discussed in detail throughout the design specification.

An advanced complementary metal-oxide semiconductor (CMOS) process is used to achieve low system-power consumption while operating at PCI clock rates up to 33 MHz. Several low-power modes enable the host power management system to further reduce power consumption.

Unused PCI1250A inputs must be pulled up using a 43 k Ω resistor.

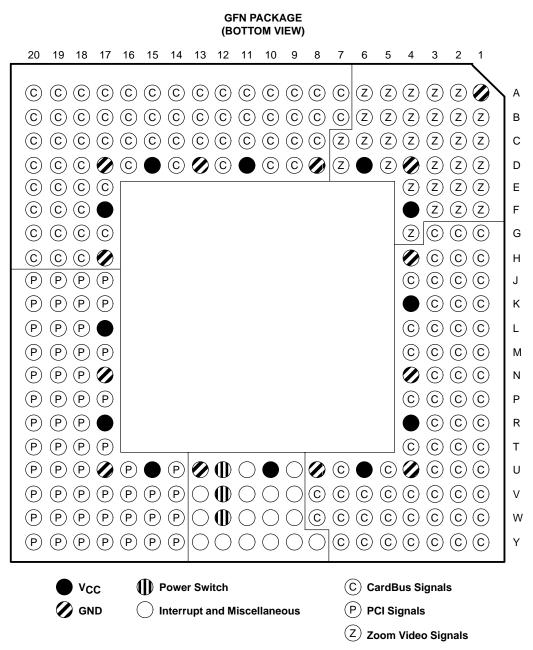

system block diagram

A simplified system block diagram using the PCI1250A is provided below. The zoomed video (ZV) capability can be used to route the ZV data directly to the VGA controller.

The PCI interface includes all address/data and control signals for PCI protocol. The 68-pin PC Card interface includes all address/data and control signals for CardBus and 16-bit (R2) protocols. When zoomed video (ZV) is enabled (in 16-bit PC Card mode) 23 of the 68 signals are redefined to support the ZV protocol.

The interrupt interface includes terminals for parallel PCI, parallel ISA, and serialized PCI and ISA signaling. The ring indicate terminal is included in the interrupt interface because its function is to perform system wake up on incoming PC Card modem rings. Other miscellaneous system interface terminals are available on the PCI1250A that include:

- Programmable general purpose multifunction terminals
- SUSPEND, RI_OUT/PME (power management control signal)
- SPKROUT.



NOTE: The PC Card interface is 68 pins for CardBus and 16-bit PC Cards. In zoomed-video mode 23 pins are used for routing the zoomed video signals too the VGA controller.

XCPS014 - DECEMBER 1997

terminal groups and locations

Terminal Functions

The terminals are grouped in tables by functionality, such as PCI system function, power-supply function, etc. The terminal numbers are also listed for convenient reference.

power supply

	TERMINAL	FUNCTION		
NAME	NO.	FUNCTION		
GND	A1, D4, D8, D13, D17, H4, H17, N4, N17, U4, U8, U13, U17	Device ground terminals		
VCC	D6, D11, D15, F4, F17, K4, L17, R4, R17, U6, U10, U15	Power supply terminal for core logic (3.3 V)		
VCCA	K2, R3, W5	Rail power input for PC Card A interface. Indicates Card A signaling environment.		
V _{CCB}	B16, C10, F18,	Rail power input for PC Card B interface. Indicates Card B signaling environment.		
VCCI	V10	Rail power input for interrupt subsystem interface and miscellaneous I/O. Indicates signaling level of the following inputs and shared outputs: IRQSER, PCGNT, PCREQ, SUSPEND, SPKROUT, GPIO1:0, IRQMUX7–IRQMUX0, INTA, INTB, CLOCK, DATA, LATCH, and RI_OUT.		
VCCP	K20, P18, V15, W20	Rail power input for PCI signaling (3.3 V or 5 V)		
V _{CCZ}	A4, D1	Rail power input for zoom video interface (3.3 V or 5 V)		

PCI system

	TERMINAL I/O		FUNCTION			
NAME	NO.	TYPE				
CLKRUN	J18	I/O	PCI clock run. CLKRUN is used by the central resource to request permission to stop the PCI clock or to slow it down, and the PCI1250A responds accordingly.			
PCLK	J17	I	PCI bus clock. PCLK provides timing for all transactions on the PCI bus. All PCI signals are sampled at the rising edge of PCLK.			
PRST	J19	I	PCI reset. When the PCI bus reset is asserted, PRST causes the PCI1250A to place all output buffers in a high-impedance state and reset all internal registers. When PRST is asserted, the device is completely nonfunctional. After PRST is deasserted, the PCI1250A is in its default state. When the SUSPEND mode is enabled, the device is protected from the PRST, and the internal registers are cleared. All outputs are placed in a high-impedance state, but the contents of the registers are preserved.			

PC Card power switch

TERMIN	TERMINAL		FUNCTION		
NAME	NO.	TYPE	FUNCTION		
CLOCK	U12	I/O	3-line power switch clock. Information on the DATA line is sampled at the rising edge of CLOCK. CLOCK defaults to an input, but can be changed to a PCI1250A output by using the P2CCLK bit in the system control register. The TPS2206 defines the maximum frequency of this signal to be 2 MHz. If a system design defines this terminal as an output, CLOCK requires an external pullup resistor. The frequency of the PCI1250A output CLOCK is derived by dividing the PCI CLK by 36.		
DATA	V12	0	3-line power switch data. DATA is used to serially communicate socket power-control information to the po switch.		
LATCH	W12	0	3-line power switch latch. LATCH is asserted by the PCI1250A to indicate to the PC Card power switch that the data on the DATA line is valid.		

XCPS014 - DECEMBER 1997

Terminal Functions (Continued)

PCI address and data

TERMINAL I/O		I/O	FUNCTION
NAME	NO.	TYPE	FUNCTION
AD31 AD30 AD29 AD28 AD27 AD26 AD25 AD24 AD23 AD22 AD21 AD20 AD19 AD18 AD17 AD16 AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD1 AD5 AD4 AD5 AD4 AD5 AD4 AD5 AD4 AD5 AD4 AD5 AD4 AD5 AD4 AD5 AD7 AD6 AD7 AD6 AD7 AD7 AD7 AD7 AD7 AD7 AD7 AD7 AD7 AD7	K18 K19 L20 L18 L19 M20 M19 M18 P20 P19 R20 R19 P17 R18 V18 V18 V17 U16 Y18 W17 U16 Y18 W17 V16 W17 V16 W17 V16 W17 V16 W17 V16 W17 V16 W17 V16 W17 V14 Y14	1/0	PCI address/data bus. These signals make up the multiplexed PCI address and data bus on the primary interface. During the address phase of a primary bus PCI cycle, AD31–AD0 contain a 32-bit address or other destination information. During the data phase, AD31–AD0 contain data.
C/ <u>BE3</u> C/ <u>BE2</u> C/ <u>BE1</u> C/BE0	M17 T20 W19 Y17	I/O	PCI bus commands and byte enables. These signals are multiplexed on the same PCI terminals. During the address phase of a primary bus PCI cycle, C/BE3–C/BE0 define the bus command. During the data phase, this 4-bit bus is used as byte enables. The byte enables determine which byte paths of the full 32-bit data bus carry meaningful data. C/BE0 applies to byte 0 (AD7–AD0), C/BE1 applies to byte 1 (AD15–AD8), C/BE2 applies to byte 2 (AD23–AD16), and C/BE3 applies to byte 3 (AD31–AD24).
PAR	Y20	I/O	PCI bus parity. In all PCI bus read and write cycles, the PCI1250A calculates even parity across the AD31–AD0 and C/BE3–C/BE0 buses. As an initiator during PCI cycles, the PCI1250A outputs this parity indicator with a one-PCLK delay. As a target during PCI cycles, the calculated parity is compared to the initiator's parity indicator. A compare error results in the assertion of a parity error (PERR).

XCPS014 - DECEMBER 1997

Terminal Functions (Continued)

PCI interface control

TERMINA			EUNCTION	
NAME	NO.	TYPE	FUNCTION	
DEVSEL	V20	I/O	PCI device select. The PCI1250A asserts DEVSEL to claim a PCI cycle as the target device. As a PCI initiator on the bus, the PCI1250A monitors DEVSEL until a target responds. If no target responds before timeout occurs, the PCI1250A terminates the cycle with an initiator abort.	
FRAME	T19	I/O	PCI cycle frame. FRAME is driven by the initiator of a bus cycle. FRAME is asserted to indicate that a bus transaction is beginning, and data transfers continue while this signal is asserted. When FRAME is deasserted, the PCI bus transaction is in the final data phase.	
GNT	J20	I	PCI bus grant. GNT is driven by the PCI bus arbiter to grant the PCI1250A access to the PCI bus after the current data transaction has completed. GNT may or may not follow a PCI bus request, depending on the PCI bus parking algorithm.	
GPIO2/LOCK	V19	I/O	PCI bus general-purpose I/O pins or PCI bus lock. GPIO2/LOCK can be configured as PCI LOCK and used to gain exclusive access downstream. Since this functionality is not typically used, a general-purpose I/O may be accessed through this terminal. GPIO2/LOCK defaults to a general-purpose input and can be configured through the GPIO2 control register.	
IDSEL	N20	I	Initialization device select. IDSEL selects the PCI1250A during configuration space accesses. IDSEL can be connected to one of the upper 24 PCI address lines on the PCI bus.	
IRDY	T18	I/O	PCI initiator ready. IRDY indicates the PCI bus initiator's ability to complete the current data phase of the transaction. A data phase is completed on a rising edge of PCLK where both IRDY and TRDY are asserted. Until IRDY and TRDY are both sampled asserted, wait states are inserted.	
PERR	U18	I/O	PCI parity error indicator. PERR is driven by a PCI device to indicate that calculated parity does not match PAR when PERR is enabled through bit 6 of the command register.	
REQ	K17	0	PCI bus request. REQ is asserted by the PCI1250A to request access to the PCI bus as an initiator.	
SERR	U19	ο	PCI system error. SERR is an output that is pulsed from the PCI1250A when enabled through the comma register, indicating a system error has occurred. The PCI1250A need not be the target of the PCI cycle assert this signal. When SERR is enabled in the bridge control register, this signal also pulses, indicat that an address parity error has occurred on a CardBus interface.	
STOP	T17	I/O	PCI cycle stop signal. STOP is driven by a PCI target to request the initiator to stop the current PCI bus transaction. STOP is used for target disconnects and is commonly asserted by target devices that do not support burst data transfers.	
TRDY	U20	I/O	PCI target ready. TRDY indicates the primary bus target's ability to complete the current data phase of the transaction. A data phase is completed on a rising edge of PCLK when both IRDY and TRDY are asserted. Until both IRDY and TRDY are asserted, wait states are inserted.	

XCPS014 - DECEMBER 1997

Terminal Functions (Continued)

system interrupt

TERMINA	TERMINAL		FUNCTION		
NAME	NO.	TYPE	FUNCTION		
GPIO3/INTA	V13	I/O	Parallel PCI interrupt. GPI03/INTA can be connected to an available PCI interrupt if parallel PCI interrupts are used, and the PCI1250A outputs PCI INTA through this terminal. GPI03/INTA defaults to a general-purpose input.		
IRQSER/INTB	W13	I/O	Serial interrupt signal/parallel PCI interrupt. When IRQSER/INTB is configured as IRQSER, it provides the IRQSER-style serial interrupting scheme. Serialized PCI interrupts can also be sent in the IRQSER stream. IRQSER/INTB can be configured as the parallel PCI INTB interrupt. IRQSER/INTB defaults to IRQSER because this is the default interrupt signaling method.		
IRQMUX7 Y12 IRQMUX6 U11 IRQMUX5 W10 IRQMUX4 Y9	0	Interrupt request/secondary functions multiplexed. The primary function of these terminals is to provide the ISA-type IRQ signaling supported by the PCI1250A. These interrupt multiplexer outputs can be mapped to any of 15 IRQs. The device control register must be programmed for the ISA IRQ interrupt mode and the IRQMUX routing register must have the IRQ routing programmed before these terminals are enabled.			
IRQMUX3 IRQMUX2 IRQMUX1 IRQMUX0	IRQMUX3 W9 O IRQMUX2 V9 IRQMUX1 U9	0	All of these terminals have secondary functions, such as PC/PCI DMA request/grant, ring indicate output, and zoom video status, that can be selected with the appropriate programming of this register. When the secondary functions are enabled, the respective terminals are not available for IRQ routing. See the IRQMUX routing register for programming options.		
RI OUT/PME Y13		0	Ring indicate output/power management event. RI_OUT allows the RI input from a PC Card to pass through to the system. This pin can be configured as the PME pin by setting bit 0 in the system control register. This pin is RI_OUT when RIENB is enabled in the card control register and ExCA interrupt and general control		
KI_OOT/FINE	110	Ĵ	register. This pin is \overrightarrow{PME} when RIENB is disabled and bit 1 of the system control register is 1. IRQMUX4 or IRQMUX3 can be used to route the \overrightarrow{RI} _OUT signal when the \overrightarrow{PME} signal is routed on pin Y13 and a ring indicate signal is still required.		

PC/PCI DMA

TERMIN	TERMINAL		FUNCTION	
NAME	NO.	TYPE	FUNCTION	
			PC/PCI DMA grant. PCGNT is used to grant the DMA channel to a requester in a system supporting the PC/PCI DMA scheme.	
PCGNT/ IRQMUX6	U11 I/O		Interrupt request MUX 6. When configured for IRQMUX6, this terminal provides the IRQMUX6 interrupt output of the interrupt multiplexer, and can be mapped to any of 15 ISA-type IRQs. IRQMUX6 takes precedence over PCGNT, and should not be enabled in a system using PC/PCI DMA.	
			This terminal is also used for the serial EEPROM interface.	
			PC/PCI DMA request. PCREQ is used to request DMA transfers as DREQ in a system supporting the PC/PCI DMA scheme.	
PCREQ/ IRQMUX7	Y12	0	Interrupt request MUX 7. When configured for IRQMUX7, this terminal provides the IRQMUX7 interrupt output of the interrupt multiplexer, and can be mapped to any of 15 ISA-type IRQs. IRQMUX7 takes precedence over PCREQ, and should not be enabled in a system using PC/PCI DMA.	
	This terminal is also used for the serial EEPROM interface.		This terminal is also used for the serial EEPROM interface.	

XCPS014 - DECEMBER 1997

Terminal Functions (Continued)

zoom video

TERI	MINAL	I/O AND MEMORY	I/O	FUNCTION
NAME	NO.	SIGNAL	TYPE	I SNOTION
ZV_HREF	A6	A10	0	Horizontal sync to the zoom video port
ZV_VSYNC	C7	A11	0	Vertical sync to the zoom video port
ZV_Y7	A3	A20		
ZV_Y6	B4	A14		
ZV_Y5	C5	A19		
ZV_Y4	B5	A13	0	Video data to the zoom video port in YV:4:2:2 format
ZV_Y3	C6	A18	Ŭ	
ZV_Y2	D7	A8		
ZV_Y1	A5	A17		
ZV_Y0	B6	A9		
ZV_UV7	D2	A25		
ZV_UV6	C3	A12		
ZV_UV5	B1	A24		
ZV_UV4	B2	A15	0	Video data to the zoom video port in YV:4:2:2 format
ZV_UV3	A2	A23	Ŭ	
ZV_UV2	C4	A16		
ZV_UV1	B3	A22		
ZV_UV0	D5	A21		
ZV_SCLK	C2	A7	0	Audio SCLK PCM
ZV_MCLK	D3	A6	0	Audio MCLK PCM
ZV_PCLK	E1	IOIS16	0	Pixel clock to the zoom video port
ZV_LRCLK	E3	INPACK	0	Audio LRCLK PCM
ZV_SDATA	E2	SPKR	0	Audio SDATA PCM
ZV_RSVD	F1, F2, F3, G4		0	Reserved. No connection.
ZV_RSV1 ZV_RSV0	C1 E4	A5 A4	ο	Reserved. No connection in the PC Card. ZV_RSVD1 and ZV_RSVD0 are put into the high-impedance state by host adapter.

miscellaneous

TERMINAL	_	I/O	FUNCTION	
NAME	NO.	TYPE	FUNCTION	
GPIO0/LEDA1	V11	I/O	GPIO0/socket activity LED indicator 1. When GPIO0/LEDA1 is configured as LEDA1, it provides an output indicating PC Card socket 0 activity. Otherwise, GPIO0/LEDA1 can be configured as a general-purpose input and output, GPIO0. The zoom video enable signal (ZV_STAT) can also be routed to this signal through the GPIO0 control register. GPIO0/LEDA1 defaults to a general-purpose input.	
GPIO1/LEDA2	W11	I/O	GPI01/socket activity LED indicator 2. When GPI01/LEDA2 is configured as LEDA2, it provides an output indicating PC Card socket 1 activity. Otherwise, GPI01/LEDA2 can be configured as a general-purpos input and output, GPI01. A CSC interrupt can be generated on a GPDATA change, and this input can b used for power switch overcurrent (OC) sensing. See <i>GPI01 control register</i> for programming details GPI01/LEDA2 defaults to a general-purpose input.	
SPKROUT	Y10	0	Speaker output. SPKROUT is the output to the host system that can carry SPKR or CAUDIO through th PCI1250A from the PC Card interface. SPKROUT is driven as the exclusive-OR combination of car SPKR//CAUDIO inputs.	
SUSPEND	Y11	I	Suspend. SUSPEND is used to protect the internal registers from clearing when PRST is asserted. See SUSPEND mode for details.	

XCPS014 - DECEMBER 1997

Terminal Functions (Continued)

16-bit PC Card address and data (slots A and B)

Т	ERMINAI	_		
	N	NO. I/O		FUNCTION
NAME	SLOT A [†]	SLOT B [‡]	TYPE	FUNCTION
A25 A24 A23 A22 A21 A20 A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0	T4 U2 U1 P4 R2 R1 P1 N2 M4 T1 T2 P2 N3 T3 M1 L1 M3 N1 V1 V2 V3 W2 V3 W2 V3 W2 V3 W2 V3 W2 V3 W2 V3 W2 V3 W2 V3 V2 V3 V2 V3 V2 V3 V2 V3 V2 V3 V2 V3 V2 V3 V2 V3 V3 V2 V3 V2 V3 V4 V3 V3 V3 V4 V3 V4 V3 V4 V4 V3 V4 V3 V4 V4 V4 V4 V4 V4 V4 V4 V4 V4 V4 V4 V4	C14 B15 C15 C16 A18 C17 B18 A20 C18 A17 A16 B17 A16 B17 A19 D14 D14 D18 E18 B20 B19 A15 A14 B13 A13 C12 B11 C11	0	PC Card address. 16-bit PC Card address lines. A25 is the most-significant bit.
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0	K3 J2 J4 H2 G1 W8 Y7 V7 J1 J3 H1 H3 G2 V8 W7 Y6	E19 E20 G18 G19 H18 B7 C8 A8 G17 F19 F20 G20 H19 A7 B8 D9	I/O	PC Card data. 16-bit PC Card data lines. D15 is the most-significant bit.

[†] Terminal name for slot A is preceded with A_. For example, the full name for terminal T4 is A_A25.

[‡] Terminal name for slot B is preceded with B_. For example, the full name for terminal C14 is B_A25.

XCPS014 - DECEMBER 1997

Terminal Functions (Continued)

16-bit PC Card interface control (slots A and B)

TERMINAL					
NAME		O. SLOT B [‡]	I/O TYPE	FUNCTION	
BVD1 (STSCHG/RI)	V6	A9	I	Battery voltage detect 1. BVD1 is generated by 16-bit memory PC Cards that include batteries. BVD1 is used with BVD2 as an indication of the condition of the batteries on a memory PC Card. Both BVD1 and BVD2 are kept high when the battery is good. When BVD2 is low and BVD1 is high, the battery is weak and should be replaced. When BVD1 is low, the battery is no longer serviceable and the data in the memory PC Card is lost.	
				Status change. STSCHG is used to alert the system to a change in the READY, write protect, or battery voltage dead condition of a 16-bit I/O PC Card. Ring indicate. RI is used by 16-bit modem cards to indicate a ring detection.	
BVD2	BVD2			Battery voltage detect 2. BVD2 is generated by 16-bit memory PC Cards that include batteries. BVD2 is used with BVD1 as an indication of the condition of the batteries on a memory PC Card. Both BVD1 and BVD2 are high when the battery is good. When BVD2 is low and BVD1 is high, the battery is weak and should be replaced. When BVD1 is low, the battery is no longer serviceable and the data in the memory PC Card is lost.	
(SPKR)	Y5	D10	I	Speaker. SPKR is an optional binary audio signal available only when the card and socket have been configured for the 16-bit I/O interface. The audio signals from cards A and B are combined by the PCI1250A and are output on SPKROUT.	
				DMA request. BVD2 can be used as the DMA request signal during DMA operations to a 16-bit PC Card that supports DMA. The PC Card asserts BVD2 to indicate a request for a DMA operation.	
CD1 CD2	G3 W6	H20 C9	I	PC Card detect 1 and PC Card detect 2. CD1 and CD2 are internally connected to ground on the PC Card. When a PC Card is inserted into a socket, CD1 and CD2 are pulled low.	
CE1 CE2	K1 L2	D20 D19	0	Card enable 1 and card enable 2. CE1 and CE2 enable even- and odd-numbered address bytes. CE1 enables even-numbered address bytes, and CE2 enables odd-numbered address bytes.	
INPACK	Y1	D12	I	Input acknowledge. INPACK is asserted by the PC Card when it can respond to an I/O read cycle at the current address. DMA request. INPACK can be used as the DMA request signal during DMA operations from a 16-bit PC Card that supports DMA. If used as a strobe, the PC Card asserts this signal to indicate a request for a DMA operation.	
IORD	L4	E17	ο	 I/O read. IORD is asserted by the PCI1250A to enable 16-bit I/O PC Card data output during hos I/O read cycles. DMA write. IORD is used as the DMA write strobe during DMA operations from a 16-bit PC Car that supports DMA. The PCI1250A asserts IORD during DMA transfers from the PC Card to hos memory. 	
IOWR	M2	C19	о	I/O write. IOWR is driven low by the PCI1250A to strobe write data into 16-bit I/O PC Cards during host I/O write cycles. DMA read. IOWR is used as the DMA write strobe during DMA operations from a 16-bit PC Card that supports DMA. The PCI1250A asserts IOWR during transfers from host memory to the PC Card.	
ŌĒ	L3	C20	0	Output enable. OE is driven low by the PCI1250A to enable 16-bit memory PC Card data output during host memory read cycles. DMA terminal count. OE is used as terminal count (TC) during DMA operations to a 16-bit PC Card that supports DMA. The PCI1250A asserts OE to indicate TC for a DMA write operation.	

[†] Terminal name for slot A is preceded with A_. For example, the full name for terminal Y1 is A_INPACK.
 [‡] Terminal name for slot B is preceded with B_. For example, the full name for terminal D12 is B_INPACK.

XCPS014 - DECEMBER 1997

Terminal Functions (Continued)

16-bit PC Card interface control (slots A and B) (continued)

TERMINAL				
	NUM	BER	I/O	FUNCTION
NAME	SLOT A [†]	SLOT B [‡]	TYPE	
READY (IREQ)	Y4	A10	Ι	Ready. The ready function is provided by READY when the 16-bit PC Card and the host socket are configured for the memory-only interface. READY is driven low by the 16-bit memory PC Cards to indicate that the memory card circuits are busy processing a previous write command. READY is driven high when the 16-bit memory PC Card is ready to accept a new data transfer command. Interrupt request. IREQ is asserted by a 16-bit I/O PC Card to indicate to the host that a device on the 16-bit I/O PC Card requires service by the host software. IREQ is high (deasserted) when no interrupt is requested.
REG	Y2	B12	0	Attribute memory select. REG remains high for all common memory accesses. When REG is asserted, access is limited to attribute memory (OE or WE active) and to the I/O space (IORD or IOWR active). Attribute memory is a separately accessed section of card memory and is generally used to record card capacity and other configuration and attribute information. DMA acknowledge. REG is used as a DMA acknowledge (DACK) during DMA operations to a
				16-bit PC Card that supports DMA. The PC <u>I1250A</u> asserts REG to <u>indicate</u> a DMA operation. REG is used in conjunction with the DMA read (IOWR) or DMA write (IORD) strobes to transfer data.
RESET	W1	C13	0	PC Card reset. RESET forces a hard reset to a 16-bit PC Card.
WAIT	V5	B10	I	Bus cycle wait. WAIT is driven by a 16-bit PC Card to delay the completion of (i.e., extend) the memory or I/O cycle in progress.
WE	P3	D16	ο	Write enable. WE is used to strobe memory write data into 16-bit memory PC Cards. WE is also used for memory PC Cards that employ programmable memory technologies.
	10	510	Ũ	DMA terminal count. WE is used as TC during DMA operations to a 16-bit PC Card that supports DMA. The PC1250 asserts WE to indicate TC for a DMA read operation.
WP				Write protect. WP applies to 16-bit memory PC Cards. WP reflects the status of the write <u>-protect</u> switch on 16-bit memory PC Cards. For 16-bit I/O cards, WP is used for the 16-bit port (IOIS16) function. I/O is 16 bits. IOIS16 applies to 16-bit I/O PC Cards. IOIS16 is asserted by the 16-bit PC Card when
(IOIS16)	U7	B9	I	the address on the bus corresponds to an address to which the 16-bit PC Card responds, and the I/O port that is addressed is capable of 16-bit accesses.
				DMA request. WP can be used as the DMA request signal during DMA operations to a 16-bit PC Card that supports DMA. If used, the PC Card asserts WP to indicate a request for a DMA operation.
VS1 VS2	Y3 U3	A11 B14	I/O	Voltage sense 1 and voltage sense 2. $\overline{VS1}$ and $\overline{VS2}$, when used in conjunction with each other, determine the operating voltage of the 16-bit PC Card.

[†] Terminal name for slot A is preceded with A_. For example, the full name for terminal P3 is A_WE. [‡] Terminal name for slot B is preceded with B_. For example, the full name for terminal D16 is B_WE.

XCPS014 - DECEMBER 1997

Terminal Functions (Continued)

CardBus PC Card interface system (slots A and B)

TER	MINAL			
	NO.		I/O	FUNCTION
NAME	SLOT A [†]	SLOT B [‡]	TYPE	T ONC TION
CCLK	T1	A17	ο	CardBus PC Card clock. CCLK provides synchronous timing for all transactions on the CardBus interface. All signals except CRST, CCLKRUN, CINT, CSTSCHG, CAUDIO, CCD2:1, and CVS2–CVS1 are sampled on the rising edge of CCLK, and all timing parameters are defined with the rising edge of this signal. CCLK operates at the PCI bus clock frequency, but it can be stopped in the low state or slowed down for power savings.
CCLKRUN	U7	B9	0	CardBus PC Card clock run. CCLKRUN is used by a CardBus PC Card to request an increase in the CCLK frequency, and by the PCI1250A to indicate that the CCLK frequency is decreased.
CRST	W1	C13	I/O	CardBus PC Card reset. CRST is used to bring CardBus PC Card-specific registers, sequencers, and signals to a known state. When CRST is asserted, all CardBus PC Card signals must be 3-stated, and the PCI1250A drives these signals to a valid logic level. Assertion can be asynchronous to CCLK, but deassertion must be synchronous to CCLK.

[†] Terminal name for slot A is preceded with A_. For example, the full name for terminal T1 is A_CCLK.
 [‡] Terminal name for slot B is preceded with B_. For example, the full name for terminal A17 is B_CCLK.

XCPS014 - DECEMBER 1997

Terminal Functions (Continued)

CardBus PC Card address and data (slots A and B)

TE	RMINAL			
	N	0.	I/O	FUNCTION
NAME	SLOT A [†]	SLOT B [‡]	TYPE	FUNCTION
CAD31 CAD30 CAD29 CAD28 CAD27 CAD26 CAD25 CAD24 CAD23 CAD22 CAD21 CAD20 CAD19 CAD18 CAD17 CAD16 CAD13 CAD12 CAD11 CAD10 CAD9 CAD8 CAD7 CAD6 CAD7 CAD6 CAD7 CAD6 CAD7 CAD10 CAD9 CAD8 CAD7 CAD6 CAD7 CAD10 CAD12 CAD11 CAD10 CAD9 CAD8 CAD7 CAD20 CAD20 CAD21 CAD20 CAD21 CAD20 CAD21 CAD20 CAD21 CAD20 CAD21 CAD21 CAD20 CAD21 CAD20 CAD21 CAD20 CAD21 CAD20 CAD21 CAD20 CAD21 CAD20 CAD21 CAD20 CAD21 CAD20 CAD21 CAD20 CAD21 CAD20 CAD21 CAD20 CAD21 CAD20 CAD21 CAD20 CAD21 CAD20 CAD20 CAD21 CAD20 CAD19 CAD18 CAD17 CAD16 CAD15 CAD14 CAD13 CAD21 CAD10 CAD13 CAD21 CAD21 CAD20 CAD21 CAD20 CAD21 CAD20 CAD21 CAD20 CAD21 CAD20 CAD21 CAD20 CAD21 CAD20 CAD21 CAD20 CAD21 CAD21 CAD21 CAD21 CAD21 CAD20 CAD21 CAD20	W8 Y7 W7 V6 U5 V4 W4 W3 V2 V3 V2 V4 W4 W3 V2 V3 V2 T4 V1 U2 M4 M3 L4 M1 L3 L2 L1 K3 J1 J4 J3 H2 H1 G1 SQ	B7 C8 B8 A8 D9 C11 B11 A12 C12 A13 B13 A14 C14 A15 C18 C19 B20 D19 E18 E19 G17 G18 F19 G19 F20 H18 G20 H19 F20 H18 G20 H19 F20 H18 G20 H19 F20 H18 G20 H19 F20 H18 G20 H19 F20 H18 G20 H19 F20 H18 G20 H19 F20 H18 G20 H18 H19 H18 H18 H18 H18 H18 H18 H18 H18 H18 H18 H18 H18	I/O	PC Card address and data. These signals make up the multiplexed CardBus address and data bus on the CardBus interface. During the address phase of a CardBus cycle, CAD31–CAD0 contain a 32-bit address. During the data phase of a CardBus cycle, CAD31–CAD0 contain data. CAD31 is the most-significant bit.
CC/ <u>BE3</u> CC/ <u>BE2</u> CC/ <u>BE1</u> CC/BE0	Y2 T3 N1 K1	B12 D14 B19 D20	I/O	CardBus bus commands and byte enables. CC/BE3–CC/BE0 are multiplexed on the same CardBus terminals. During the address phase of a CardBus cycle, CC/BE3–CC/BE0 defines the bus command. During the data phase, this 4-bit bus is used as byte enables. The byte enables determine which byte paths of the full 32-bit data bus carry meaningful data. CC/BE0 applies to byte 0 (CAD7–CAD0), CC/BE1 applies to byte 1 (CAD15–CAD8), CC/BE2 applies to byte 2 (CAD23–CAD8), and CC/BE3 applies to byte 3 (CAD31–CAD24).
CPAR	N3	A19	I/O	CardBus parity. In all CardBus read and write cycles, the PCI1250A calculates even parity across the CAD and CC/BE buses. As an initiator during CardBus cycles, the PCI1250A outputs CPAR with a one-CCLK delay. As a target during CardBus cycles, the calculated parity is compared to the initiator's parity indicator; a compare error results in a parity error assertion.

[†] Terminal name for slot A is preceded with A_. For example, the full name for terminal N3 is A_CPAR.

[‡] Terminal name for slot B is preceded with B_. For example, the full name for terminal A19 is B_CPAR.

XCPS014 - DECEMBER 1997

Terminal Functions (Continued)

CardBus PC Card interface control (slots A and B)

TER	MINAL			
NAME		O. SLOT B [‡]	I/O TYPE	FUNCTION
CAUDIO	Y5	D10	Ι	CardBus audio. CAUDIO is a digital input signal from a PC Card to the system speaker. The PCI1250A supports the binary audio mode and outputs a binary signal from the card to SPKROUT.
CBLOCK	P1	B18	I/O	CardBus lock. CBLOCK is used to gain exclusive access to a target.
CCD1 CCD2	G3 W6	H20 C9	1	CardBus detect 1 and CardBus detect 2. CCD1 and CCD2 are used in conjunction with CVS1 and CVS2 to identify card insertion and interrogate cards to determine the operating voltage and card type.
CDEVSEL	R2	A18	I/O	CardBus device select. The PCI1250A asserts CDEVSEL to claim a CardBus cycle as the target device. As a CardBus initiator on the bus, the PCI1250A monitors CDEVSEL until a target responds. If no target responds before timeout occurs, the PCI1250A terminates the cycle with an initiator abort.
CFRAME	U1	C15	I/O	CardBus cycle frame. CFRAME is driven by the initiator of a CardBus bus cycle. CFRAME is asserted to indicate that a bus transaction is beginning, and data transfers continue while this signal is asserted. When CFRAME is deasserted, the CardBus bus transaction is in the final data phase.
CGNT	P3	D16	Ι	CardBus bus grant. CGNT is driven by the PCI1250A to grant a CardBus PC Card access to the CardBus bus after the current data transaction has been completed.
CINT	Y4	A10	I	CardBus interrupt. $\overline{\text{CINT}}$ is asserted low by a CardBus PC Card to request interrupt servicing from the host.
CIRDY	T2	A16	I/O	CardBus initiator ready. CIRDY indicates the CardBus initiator's ability to complete the current data phase of the transaction. A data phase is completed on a rising edge of CCLK when both CIRDY and CTRDY are asserted. Until CIRDY and CTRDY are both sampled asserted, wait states are inserted.
CPERR	P2	B17	I/O	CardBus parity error. CPERR is used to report parity errors during CardBus transactions, except during special cycles. It is driven low by a target two clocks following that data when a parity error is detected.
CREQ	Y1	D12	Ι	CardBus request. $\overline{\text{CREQ}}$ indicates to the arbiter that the CardBus PC Card desires use of the CardBus bus as an initiator.
CSERR	V5	B10	I	CardBus system error. CSERR reports address parity errors and other system errors that could lead to catastrophic results. CSERR is driven by the card synchronous to CCLK, but deasserted by a weak pullup, and may take several CCLK periods. The PCI1250A can report CSERR to the system by assertion of SERR on the PCI interface.
CSTOP	R1	C17	I/O	CardBus stop. CSTOP is driven by a CardBus target to request the initiator to stop the current CardBus transaction. CSTOP is used for target disconnects, and is commonly asserted by target devices that do not support burst data transfers.
CSTSCHG	V6	A9	Ι	CardBus status change. CSTSCHG is used to alert the system to a change in the card's status, and is used as a wake-up mechanism.
CTRDY	P4	C16	I/O	CardBus target ready. CTRDY indicates the CardBus target's ability to complete the current data phase of the transaction. A data phase is completed on a rising edge of CCLK, when both CIRDY and CTRDY are asserted; until this time, wait states are inserted.
CVS1 CVS2	Y3 U3	A11 B14	I/O	CardBus voltage sense 1 and CardBus voltage sense 2. CVS1 and CVS2 are used in conjunction with CCD1 and CCD2 to identify card insertion and interrogate cards to determine the operating voltage and card type.

[†] Terminal name for slot A is preceded with A_. For example, the full name for terminal Y5 is A_CAUDIO.

[‡] Terminal name for slot B is preceded with B_. For example, the full name for terminal D10 is B_CAUDIO.

XCPS014 - DECEMBER 1997

absolute maximum ratings over operating temperature ranges (unless otherwise noted)[†]

Supply voltage range, V _{CC}	–0.5 V to 4.6 V
Supply voltage range, V _{CCP} , V _{CCA} , V _{CCB} , V _{CCZ} , V _{CCI}	
Input voltage range, V _I : PCI	
Card A	–0.5 to V _{CCA} + 0.5 V
Card B	–0.5 to V _{CCB} + 0.5 V
ZV	–0.5 to V _{CCZ} + 0.5 V
MISC	–0.5 to V _{CCI} + 0.5 V
Fail safe	
Output voltage range, V _O : PCI	
Card A	
Card B	
ZV	002
MISC	
Fail safe	
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$) (see Note 1)	
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$) (see Note 2)	
Storage temperature range, T _{stg}	
Virtual junction temperature, T _J [*]	150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. Applies for external input and bidirectional buffers. V_I > V_{CC} does not apply to fail-safe terminals. PCI terminals are measured with respect to V_{CCP} instead of V_{CC}. PC Card terminals are measured with respect to V_{CCA} or V_{CCB}. ZV terminals are measured with respect to V_{CCZ}, and miscellaneous signals are measured with respect to V_{CCI}. The limit specified applies for a dc condition.

 Applies for external output and bidirectional buffers. V_O > V_{CC} does not apply to fail-safe terminals. PCI terminals are measured with respect to V_{CCP} instead of V_{CC}. PC Card terminals are measured with respect to V_{CCA} or V_{CCB}. ZV terminals are measured with respect to V_{CCZ}, and miscellaneous signals are measured with respect to V_{CCI}. The limit specified applies for a dc condition.

XCPS014 - DECEMBER 1997

			OPERATION	MIN	NOM	MAX	UNI	
VCC	Core voltage	Commercial	3.3 V	3	3.3	3.6	V	
Veen	PCI I/O voltage	Commercial	3.3 V	3	3.3	3.6	v	
VCCP	PCI I/O voltage	Commercial	5 V	4.75	5	5.25	v	
VCC(A/B)	PC Cord I/O voltage	Commercial	3.3 V	3	3.3	3.6	v	
VCC(A/B)	PC Card I/O voltage	Commercial	5 V	4.75	5	5.25	v	
VCCZ	ZV port I/O voltage	Commercial	3.3 V	3	3.3	3.6	v	
	zv port i/O voltage	Commercial	5 V	4.75	5	5.25	v	
Vcci	Miscellaneous I/O voltage	Commercial	3.3 V	3	3.3	3.6	v	
1001	Miscellaneous //O voltage	Commoroidi	5 V	4.75	5	5.25	•	
		PCI	3.3 V	0.5 VCCP		VCCP		
			5 V	2		VCCP		
., +	1 Patricia Providencia	PC Card	3.3 V	0.475 V _{CCA/B}		V _{CCA/B}		
VIHţ	High-level input voltage		5 V	2.4		V _{CCA} /B	V	
		ZV		2		VCCZ		
		MISC [‡]		2		VCCI		
		Fail safe§		2		VCC		
		PCI	3.3 V	0		0.3 V _{CCP}		
			5 V	0		0.8		
L		PC Card	3.3 V	0		0.325 V _{CCA/B}		
v _{IL} †	Low-level input voltage		5 V	0		0.8	- V	
		ZV		0		0.8		
		MISC‡		0		0.8		
		Fail safe§		0		0.8		
		PCI		0		VCCP		
		PC Card		0		V _{CCA} /B		
VI	Input voltage	ZV		0		VCCZ	V	
		MISC [‡]		0		VCCI		
		Fail safe§		0		VCC		
		PCI		0		VCCP		
		PC Card		0		VCCA/B		
Vo¶	Output voltage	ZV		0		VCCZ	V	
		MISC [‡]		0		VCCI		
		Fail safe§		0		VCC		

mended exerciting conditions (see Note 2)

[†] Applies to external inputs and bidirectional buffers without hysteresis

¹ Miscellaneous pins are V13, W13, Y13, U12, V12, W12, U11, V11, W11, Y11, Y10, W10, Y09, W09, V09, U09, Y08, all IRQMUXx pins, LEDAx pins, SUSPEND, SPKROUT, RI_OUT, INTA, INTB, and power switch control pins.

§ Fail-safe pins are A11, B14, C09, G03, H20, U03, W06, and Y03 (card detect and voltage sense pins).

¶ Applies to external output buffers

NOTE 3: Unused pins (input or I/O) must be held high or low to prevent them from floating.

XCPS014 - DECEMBER 1997

recommended operating conditions (see Note 3) (continued)

			OPERATION	MIN	NOM	MAX	UNIT	
t.	Input transition time	PCI and PC Card		1		4	ns	
ч	(t _r and t _f)	ZV, miscellaneous, and fail safe		0		6	- 115	
TA	Operating ambient temperature	range		0	25	70	°C	
TJ‡	Virtual junction temperature			0	25	115	°C	

[†] These junction temperatures reflect simulation conditions. The customer is responsible for verifying junction temperature.

NOTE 3: Unused pins (input or I/O) must be held high or low to prevent them from floating.

electrical characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER	PINS	OPERATION	TEST CONDITIONS	MIN	MAX	UNIT	
		DOI	3.3 V	I _{OH} = -0.5 mA	0.9 VCC			
		PCI	5 V	I _{OH} = -2 mA	2.4			
M			3.3 V	I _{OH} = -0.15 mA	0.9 VCC		v	
VOH	High-level output voltage (see Note 4)	PC Card	5 V	I _{OH} = -0.15 mA	2.4		v	
		ZV		I _{OH} = -4 mA	VCC-0.6			
		MISC		I _{OH} = -4 mA	VCC-0.6			
		DOI:	3.3 V	I _{OL} = 1.5 mA		0.1 VCC		
		PCI	5 V	I _{OL} = 6 mA		0.55		
V _{OL} Low-level			3.3 V	I _{OL} = 0.7 mA		0.1 V _{CC}		
	Low-level output voltage	PC Card	5 V	I _{OL} = 0.7 mA		0.55	V	
		ZV		I _{OL} = 4 mA		0.5		
		MISC		I _{OL} = 4 mA		0.5		
		SERR		I _{OL} = 12 mA		0.5		
1071	3-state output, high-impedance state		3.6 V	VI = VCC		-1		
IOZL	current (see Note 4)	Output pins	5.25 V	$V_I = V_{CC}$		-1	μA	
10711	3-state output, high-impedance state	Output pins	3.6 V	$V_I = V_{CC}^{\ddagger}$		10	μA	
IOZH	current		5.25 V	$V_{I} = V_{CC}^{\ddagger}$		25	μA	
		Input pins		VI = GND		-1		
۱ _{IL}	Low-level input current	I/O pins		VI = GND		-10	μA	
		Latch		VI = GND		-2		
			3.6 V	VI = VCC§		10		
		Input pins	5.25 V	$V_I = V_{CC}$ §		20		
Ι _Η	High-level input current (see Note 5)	I/O pins	3.6 V	VI = ∧CC§		10	μA	
			5.25 V	VI = NCC§		25		
		Fail-safe pins	3.6 V	$V_I = V_{CC}$		10		

[‡] For PCI pins, $V_I = V_{CCP}$. For PC Card pins, $V_I = V_{CC(A/B)}$. For ZV pins, $V_I = V_{CCZ}$. For miscellaneous pins, $V_I = V_{CCI}$.

\$ For I/O pins, input leakage (I_{IL} and I_{IH}) includes I_{OZ} leakage of the disabled output. NOTES: 4. V_{OH} and I_{OL} are not tested on SERR (pin U19)and RI_OUT (pin Y13) because they are open-drain outputs.

5. IIH is not tested on LATCH (pin W12) because it is pulled up with an internal resistor.

XCPS014 - DECEMBER 1997

PCI clock/reset timing requirements over recommended ranges of supply voltage and operating free-air temperature (see Figures 20 and 21)

	PARAMETER	ALTERNATE SYMBOL	TEST CONDITIONS	MIN	МАХ	UNIT
t _C	Cycle time, PCLK	t _{cyc}		30		ns
t _{wH}	Pulse duration, PCLK high	^t high		11		ns
t _{wL}	Pulse duration, PCLK low	tlow		11		ns
$\Delta v / \Delta t$	Slew rate, PCLK	t _r , t _f		1	4	V/ns
tw	Pulse duration, RSTIN	t _{rst}		1		ms
t _{su}	Setup time, PCLK active at end of RSTIN	t _{rst-clk}		100		μs

PCI timing requirements over recommended ranges of supply voltage and operating free-air temperature (see Note 4 and Figures 19 and 22)

	PARAMETER		ALTERNATE SYMBOL	TEST CONDITIONS	MIN	MAX	UNIT
	Propagation delay time,	PCLK-to-shared signal valid delay time	^t val			11	
^t pd	See Note 6	PCLK-to-shared signal invalid delay time	t _{inv}	C _L = 50 pF, See Note 7	2		ns
ten	Enable time, high impedance-to-active delay	time from PCLK	ton		2		ns
^t dis	tdis Disable time, active-to-high impedance delay time from PCLK		^t off			28	ns
t _{su} Setup time before PCLK valid		t _{su}		7		ns	
th Hold time after PCLK high		th		0		ns	

6. PCI shared signals are AD31–0, C/BE3–0, FRAME, TRDY, IRDY, STOP, IDSEL, DEVSEL, and PAR.

NOTES: 7. This data sheet uses the following conventions to describe time (t) intervals. The format is t_A, where *subscript A* indicates the type of dynamic parameter being represented. One of the following is used: t_{pd} = propagation delay time, t_d = delay time, t_{su} = setup time, and t_h = hold time.

XCPS014 – DECEMBER 1997

Input

tpd

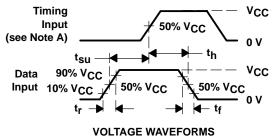
tpd -

(see Note A)

Out-of-Phase

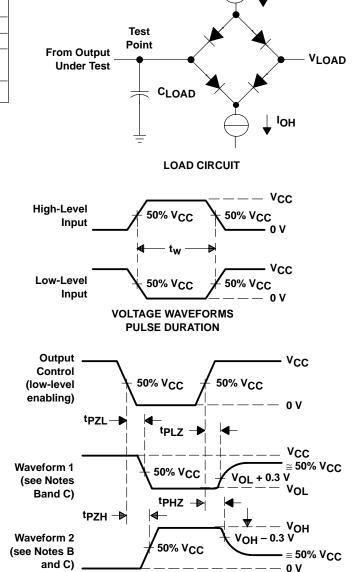
In-Phase

Output


Output

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT PARAMETERS								
TIMING PARAMETER		C _{LOAD} † (pF)	l <mark>OL</mark> (mA)	IOH (mA)	V _{LOAD} (V)			
t	^t PZH	50	8	-8	0			
ten	^t PZL	50		-0	3			
t	^t PHZ	50	0	0	4 5			
^t dis	^t PLZ	50	8	-8	1.5			
^t pd		50	8	-8	‡			


[†]C_{LOAD} includes the typical load-circuit distributed capacitance.

 $\ddagger \frac{V_{LOAD} - V_{OL}}{I_{OL}}$ = 50 $\Omega,$ where V_{OL} = 0.6 V, I_{OL} = 8 mA

SETUP AND HOLD TIMES INPUT RISE AND FALL TIMES

50% V_CC

loL

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

50% Vcc

50% V_{CC}

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS

NOTES: A. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by pulse generators having the following characteristics: PRR = 1 MHz, $Z_O = 50 \Omega$, $t_r = 6 ns$.

Vcc

0 V

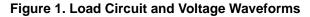
VOH

VOL

VOH

VOL

50% Vcc


50% V_{CC}

tpd

tpd

50% V_{CC}

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. For tPLZ and tPHZ, VOL and VOH are measured values.

XCPS014 - DECEMBER 1997

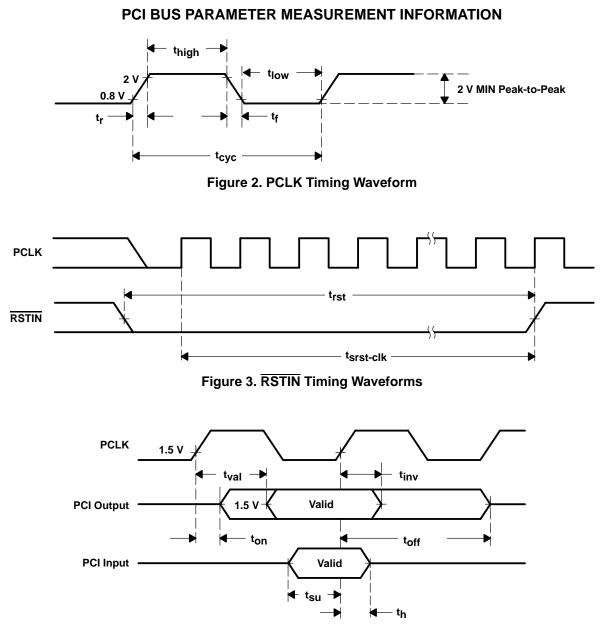


Figure 4. Shared Signals Timing Waveforms

XCPS014 – DECEMBER 1997

PC Card cycle timing

The PC Card cycle timing is controlled by the wait-state bits in the Intel 82365SL-DF compatible memory and I/O window registers. The PC Card cycle generator uses the PCI clock to generate the correct card address setup and hold times and the PC Card command active (low) interval. This allows the cycle generator to output PC Card cycles that are as close to the Intel 82365SL-DF timing as possible while always slightly exceeding the Intel 82365SL-DF values. This ensures compatibility with existing software and maximizes throughput.

The PC Card address setup and hold times are a function of the wait-state bits. Table 1 shows address setup time in PCLK cycles and nanoseconds for I/O and memory cycles. Table 2 and Table 3 show command active time in PCLK cycles and nanoseconds for I/O and memory cycles. Table 4 shows address hold time in PCLK cycles and nanoseconds for I/O and memory cycles.

WAIT-S	TS1 – 0 = 01 (PCLK/ns)		
I/O			3/90
Memory	WS1	0	2/60
Memory	WS1	1	4/120

Table 1. PC Card Address Setup Time, t_{su(A)}, 8-Bit and 16-Bit PCI Cycles

Table 2. PC Card Command Active Time, $t_{c(A)}$, 8-Bit PCI Cycles

WAIT-S	TATE BI	TS	TS1 – 0 = 01	
	WS	ZWS	(PCLK/ns)	
	0	0	19/570	
I/O	1	Х	23/690	
	0	1	7/210	
	00	0	19/570	
	01	Х	23/690	
Memory	10	Х	23/690	
	11	Х	23/690	
	00	1	7/210	

Table 3. PC Card Command Active Time, t_{C(A)}, 16-Bit PCI Cycles

WAIT-S	TATE BI	TS1 – 0 = 01	
	WS	ZWS	(PCLK/ns)
	0	0	7/210
I/O	1	Х	11/330
	0	1	N/A
	00	0	9/270
	01	Х	13/390
Memory	10	Х	17/510
	11	Х	23/630
	00	1	5/150

XCPS014 - DECEMBER 1997

Table 4. PC Card Address Hold Time, th(A), 8-Bit and 16-Bit PCI Cycles

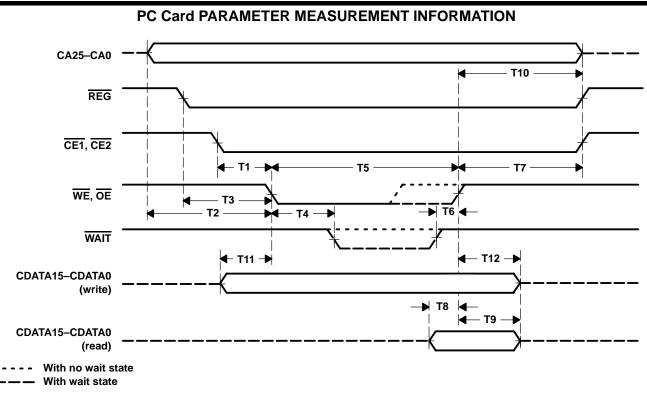
WAIT-STATE BITS			TS1 – 0 = 01 (PCLK/ns)	
I/O			2/60	
Memory	WS1	0	2/60	
Memory	WS1	1	3/90	

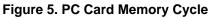
timing requirements over recommended ranges of supply voltage and operating free-air temperature, memory cycles (for 100-ns common memory) (see Note 5 and Figure 5)

		ALTERNATE SYMBOL	MIN MAX	UNIT
t _{su}	Setup time, $\overline{CE1}$ and $\overline{CE2}$ before $\overline{WE}/\overline{OE}$ low	T1	60	ns
t _{su}	Setup time, CA25–CA0 before WE/OE low	T2	t _{su(A)} +2PCLK	ns
t _{su}	Setup time, REG before WE/OE low	Т3	90	ns
^t pd	Propagation delay time, WE/OE low to WAIT low	T4		ns
tw	Pulse duration, WE/OE low	T5	200	ns
t _h	Hold time, WE/OE low after WAIT high	Т6		ns
t _h	Hold time, CE1 and CE2 after WE/OE high	T7	120	ns
t _{su}	Setup time (read), CDATA15–CDATA0 valid before OE high	Т8		ns
t _h	Hold time (read), CDATA15–CDATA0 valid after OE high	Т9	0	ns
t _h	Hold time, CA25–CA0 and REG after WE/OE high	T10	t _{h(A)} +1PCLK	ns
t _{su}	Setup time (write), CDATA15–CDATA0 valid before WE low	T11	60	ns
t _h	Hold time (write), CDATA15–CDATA0 valid after WE low	T12	240	ns

NOTE 8: These times are dependent on the register settings associated with ISA wait states and data size. They are also dependent on cycle type (read/write, memory/I/O) and WAIT from PC Card. The times listed here represent absolute minimums (the times that would be observed if programmed for zero wait state, 16-bit cycles) with a 33-MHz PCI clock.

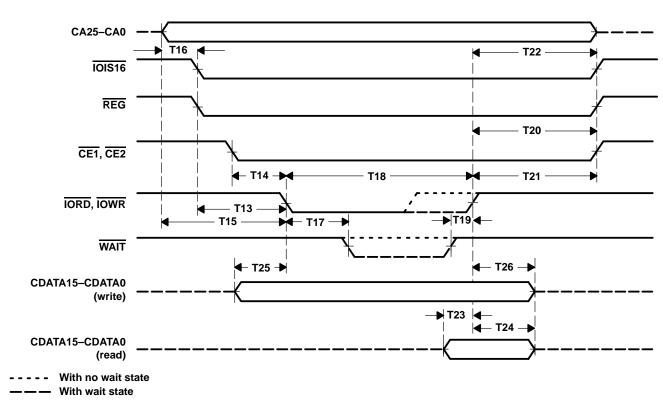
timing requirements over recommended ranges of supply voltage and operating free-air temperature, I/O cycles (see Figure 6)

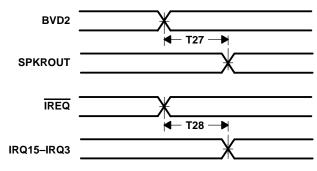

		ALTERNATE SYMBOL	MIN MA	
t _{su}	Setup time, REG before IORD/IOWR low	T13	60	ns
t _{su}	Setup time, CE1 and CE2 before IORD/IOWR low	T14	60	ns
t _{su}	Setup time, CA25–CA0 valid before IORD/IOWR low	T15	t _{su(A)} +2PCLK	ns
^t pd	Propagation delay time, IOIS16 low after CA25–CA0 valid	T16	:	35 ns
^t pd	Propagation delay time, IORD low to WAIT low	T17	35	ns
tw	Pulse duration, IORD/IOWR low	T18	Т _{сА}	ns
th	Hold time, IORD low after WAIT high	T19		ns
th	Hold time, REG low after IORD high	T20	0	ns
t _h	Hold time, CE1 and CE2 after IORD/IOWR high	T21	120	ns
t _h	Hold time, CA25–CA0 after IORD/IOWR high	T22	t _{h(A)} +1PCLK	ns
t _{su}	Setup time (read), CDATA15–CDATA0 valid before IORD high	T23	10	ns
t _h	Hold time (read), CDATA15–CDATA0 valid after IORD high	T24	0	ns
t _{su}	Setup time (write), CDATA15–CDATA0 valid before IOWR low	T25	90	ns
t _h	Hold time (write), CDATA15–CDATA0 valid after IOWR high	T26	90	ns



XCPS014 – DECEMBER 1997

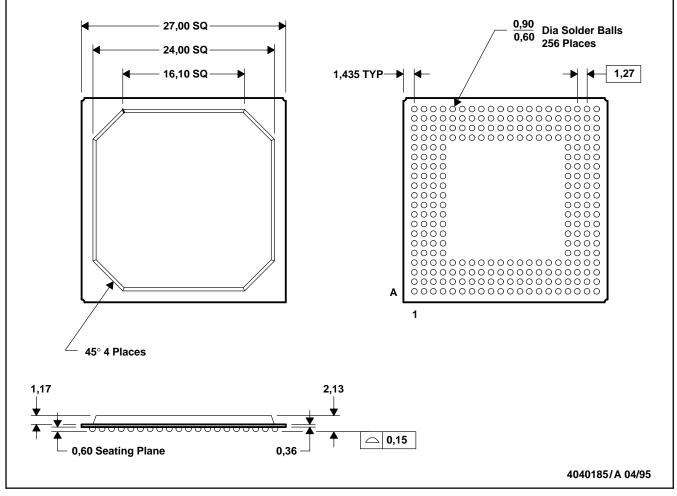
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, miscellaneous (see Figure 7)


PARAMETER		ALTERNATE SYMBOL	MIN MAX	UNIT	
t _{pd} Propagation		BVD2 low to SPKROUT low	T27	30	. ns
	Dropogation dalow time	BVD2 high to SPKROUT high	127	30	
	Propagation delay time	IREQ to IRQ15–IRQ3	TOO	30	
		STSCHG to IRQ15–IRQ3	T28	30	



XCPS014 - DECEMBER 1997

PC Card PARAMETER MEASUREMENT INFORMATION



XCPS014 - DECEMBER 1997

MECHANICAL DATA

GFN (S-PBGA-N256)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated