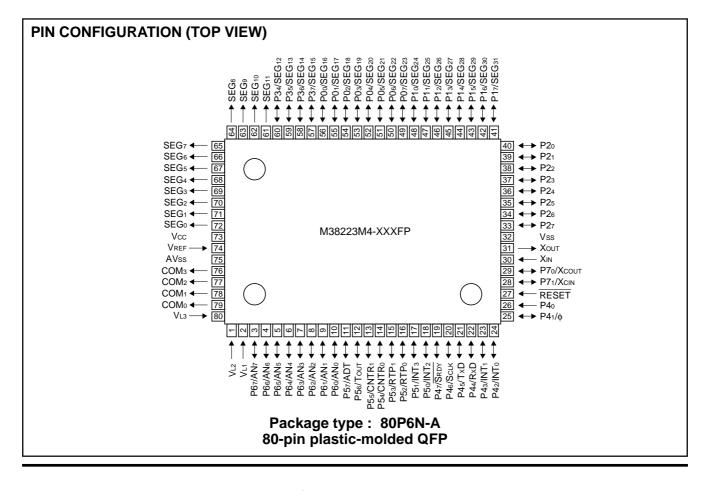
DESCRIPTION

The 3822 group is the 8-bit microcomputer based on the 740 family core technology.

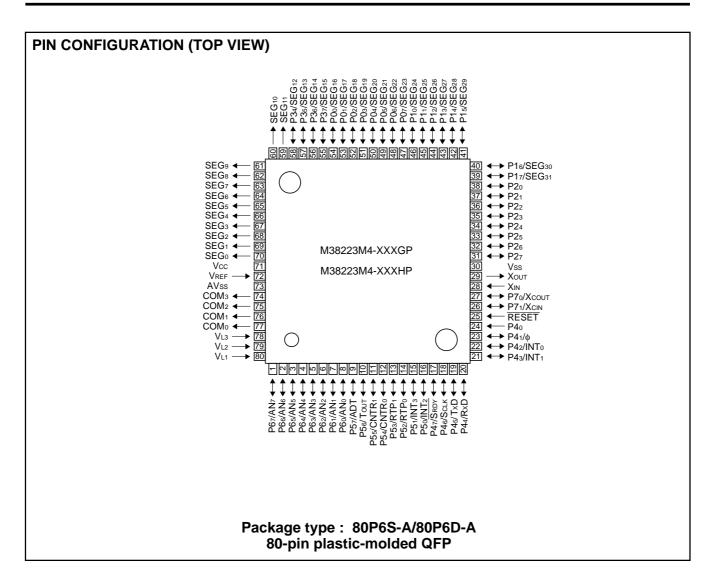
The 3822 group has the LCD drive control circuit an 8-channel A-D converter, and a Serial I/O as additional functions.

The various microcomputers in the 3822 group include variations of internal memory size and packaging. For details, refer to the section on part numbering.

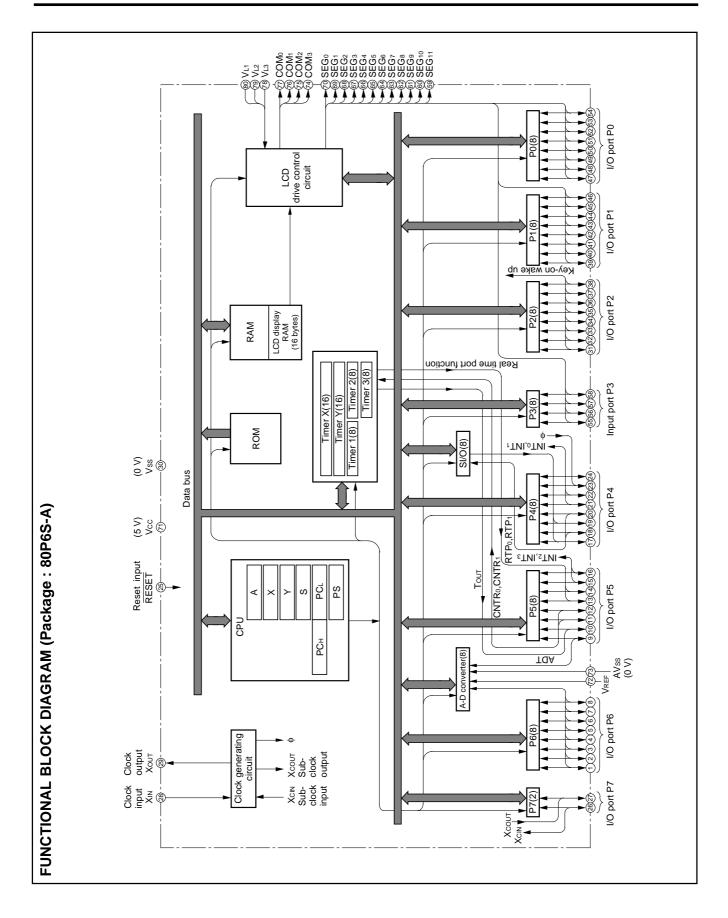
For details on availability of microcomputers in the 3822 group, refer to the section on group expansion.


FEATURES

 Basic machine-language instructi 	ons 71
 The minimum instruction execution 	on time 0.5 μs
	(at 8MHz oscillation frequency)
 Memory size 	
ROM	4 K to 32 K bytes
RAM	192 to 1024 bytes
Programmable input/output ports	
 Software pull-up/pull-down resistor 	s (Ports P0-P7 except Port P40)
Interrupts	17 sources, 16 vectors
	(includes key input interrupt)
•Timers	8-bit X 3, 16-bit X 2
• Serial I/O18-bit X 1	(UART or Clock-synchronized)
Serial I/O2	8-bit X 8 channels

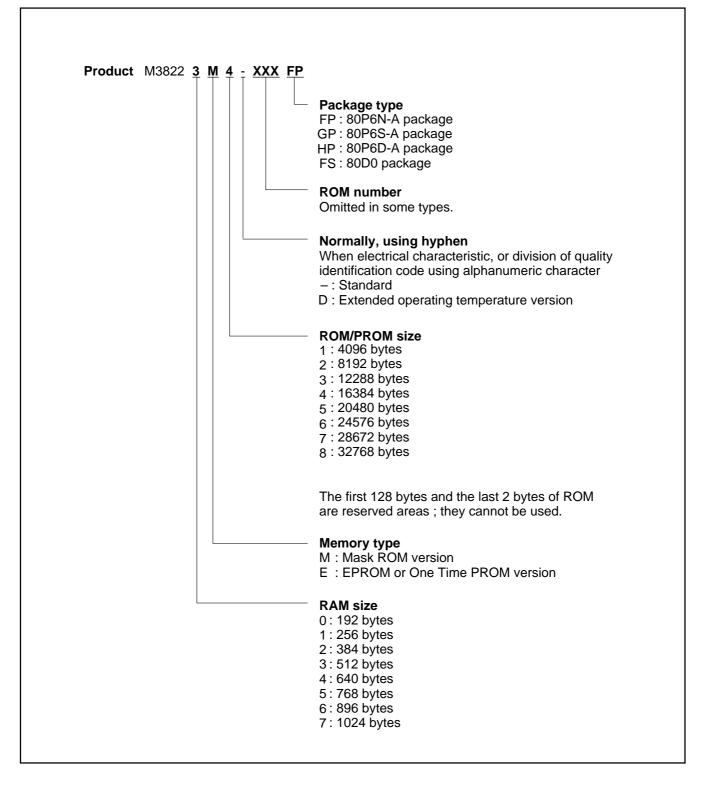

LCD drive control circuit
Bias 1/2, 1/3
Duty 1/2, 1/3, 1/4
Common output 4
Segment output
 2 Clock generating circuit
Clock (XIN-XOUT) Internal feedback resistor
Sub-clock (XCIN-XCOUT) Without internal feedback resistor
(connect to external ceramic resonator or quartz-crystal oscillator)
Power source voltage
In high-speed mode 4.0 to 5.5 V
(at 8MHz oscillation frequency and high-speed selected)
In middle-speed mode 2.5 to 5.5 V
(at 8MHz oscillation frequency and middle-speed selected)
In low-speed mode
(Extended operating temperature version: 3.0 V to 5.5 V)
• Power dissipation
In high-speed mode
(at 8 MHz oscillation frequency)
In low-speed mode
(at 32 kHz oscillation frequency, at 3 V power source voltage)
• Operating temperature range – 20 to 85°C
(Extended operating temperature version: -40 to 85°C)

APPLICATIONS


Camera, household appliances, consumer electronics, etc.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION

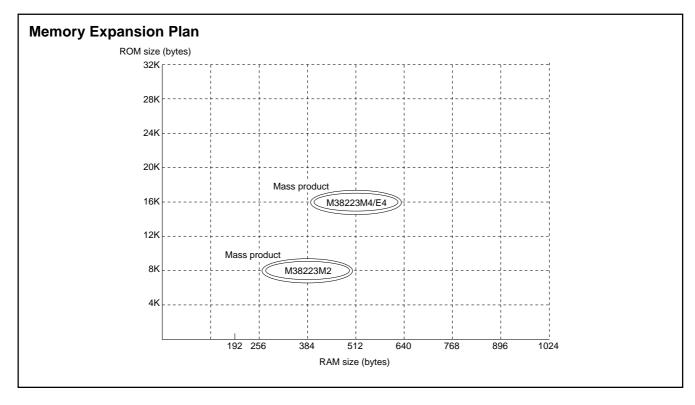

Pin	Name	Function	Function except a port function		
Vcc, Vss	Power source	• Apply voltage of 2.5 V to 5.5 V to Vcc, and 0 V to Vss.			
Vref	Analog reference voltage	Reference voltage input pin for A-D converter.			
AVss	Analog power source	GND input pin for A-D converter. Connect to Vss.			
RESET	Reset input	•Reset input pin for active "L"			
Xin	Clock input	 Input and output pins for the main clock generating circuit Feedback resistor is built in between XIN pin and XOUT pin Connect a ceramic resonator or a quartz-crystal oscillator 	n.		
Хоит	Clock output	 If an external clock is used, connect the clock source to the This clock is used as the oscillating source of system clock 	he XIN pin and leave the XOUT pin open.		
Vl1 – Vl3	LCD power source	 Input 0 ≤ VL1 ≤ VL2 ≤ VL3 ≤ VCC voltage Input 0 − VL3 voltage to LCD 			
COM0 – COM3	Common output	 LCD common output pins COM2 and COM3 are not used at 1/2 duty ratio. COM3 is not used at 1/3 duty ratio. 			
SEG0 – SEG11	Segment output	LCD segment output pins			
P00/SEG16 - P07/SEG23	I/O port P0	8-bit I/O port CMOS compatible input level CMOS 3-state output structure			
P10/SEG24 – P17/SEG31	I/O port P1	 I/O direction register allows each port to be individually programmed as either input or output. Pull-down control is enabled. 			
P20 – P27	I/O port P2	 8-bit I/O port CMOS compatible input level CMOS 3-state output structure I/O direction register allows each pin to be individually programmed as either input or output. Pull-up control is enabled. Key input (key-on wake up) intention input pins Key input (key-on wake up) intention input pins 			
P30/SEG12 – P37/SEG15	Input port P3	• 4-bit Input port • CMOS compatible input level • Pull-down control is enabled.			
P40	Input port P4	 1-bit input pin CMOS compatible input level 			
Ρ41/φ	I/O port P4	• 7-bit I/O port	•		
P42/INT0, P43/INT1		CMOS compatible input level CMOS 3-state output structure I/O direction register allows each pin to be individually programmed as other input or output	Interrupt input pins		
P44/RXD, P45/TXD, P46/SCLK, P47/SRDY		programmed as either input or output.Pull-up control is enabled.	Serial I/O1 function pins		

D .			
Pin	Name	Function	Function except a port function
P50/INT2, P51/INT3	I/O port P5	8-bit I/O port CMOS compatible input level	Interrupt input pins
P52/RTP0, P53/RTP1		 CMOS 3-state output structure I/O direction register allows each pin to be individually programmed as either input or output. 	Real time port function pins
P54/CNTR0,		Pull-up control is enabled.	Timer function pins
P55/CNTR1			Timer output pin
P56/Tout			A-D trigger input pin
P57/ADT			
P60/AN0- P67/AN7	I/O port P6	 8-bit I/O port CMOS compatible input level CMOS 3-state output structure I/O direction register allows each pin to be individually programmed as either input or output. Pull-up control is enabled. 	A-D conversion input pins
P70/XCOUT, P71/XCIN	I/O port P7	 2-bit I/O port CMOS compatible input level CMOS 3-state output structure I/O direction register allows each pin to be individually programmed as either input or output. Pull-up control is enabled. 	Sub-clock generating circuit I/O pins (Connect a resonator. External clock cannot be used.)

PART NUMBERING

MITSUBISHI MICROCOMPUTERS

3822 Group


SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

GROUP EXPANSION

Mitsubishi plans to expand the 3822 group as follows:

- (1) Support for mask ROM, One Time PROM, and EPROM versions

(3) Packages

Currently supported products are listed below.

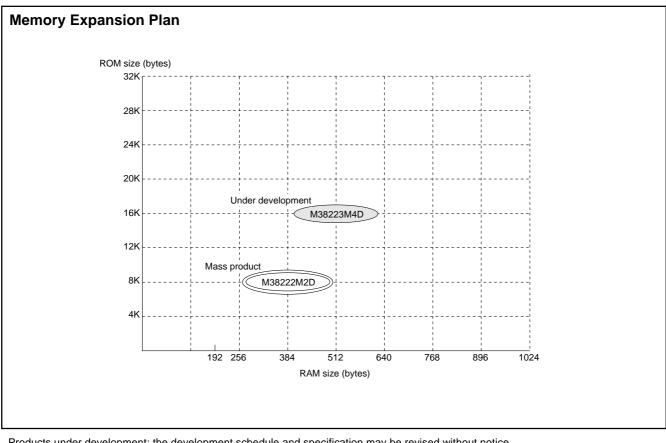
As of May 1996

Product	(P) ROM size (bytes) ROM size for User in ()	RAM size (bytes)	Package	Remarks
M38223M4-XXXFP				Mask ROM version
M38223E4-XXXFP			80P6N-A	One Time PROM version
M38223E4FP				One Time PROM version (blank)
M38223M4-XXXGP				Mask ROM version
M38223E4-XXXGP	16384 (16254)	512	80P6S-A	One Time PROM version
M38223E4GP				One Time PROM version (blank)
M38223M4-XXXHP			80P6D-A	Mask ROM version
M38223E4-XXXHP				One Time PROM version
M38223E4HP				One Time PROM version (blank)
M38223E4FS			80D0	EPROM version
M38222M2-XXXFP		384	80P6N-A	
M38222M2-XXXGP	8192 (8062)		80P6S-A	Mask ROM version
M38222M2-XXXHP	(0002)		80P6D-A	

MITSUBISHI MICROCOMPUTERS

3822 Group

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER


GROUP EXPANSION (EXTENDED OPERATING TEMPERATURE VERSION)

Mitsubishi plans to expand the 3822 group (extended operating temperature version) as follows:

(1) Support for mask ROM, One Time PROM, and EPROM versions

(3) Packages 80P6N-A 0.8 mm-pitch plastic molded QFP

Products under development: the development schedule and specification may be revised without notice.

Currently supported products are listed below.

As of May 1996

Product	ROM size (bytes) ROM size for User in ()	RAM size (bytes)	Package	Remarks
M38223M4DXXXFP	16384(16254)	512	80P6N-A	Mask ROM version
M38222M2DXXXGP	8192(8062)	384	80P6S-A	Mask ROM version

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

FUNCTIONAL DESCRIPTION Central Processing Unit (CPU)

The 3822 group uses the standard 740 family instruction set. Refer to the table of 740 family addressing modes and machine instructions or the SERIES 740 <Software> User's Manual for details on the instruction set.

Machine-resident 740 family instructions are as follows:

The FST and SLW instruction cannot be used.

The STP, WIT, MUL, and DIV instruction can be used.

CPU Mode Register

The CPU mode register is allocated at address 003B16. The CPU mode register contains the stack page selection bit and the internal system clock selection bit.

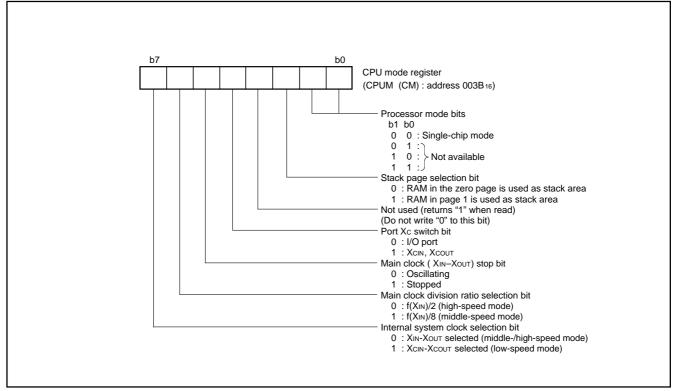


Fig. 1 Structure of CPU mode register

MEMORY Special Function Register (SFR) Area

The Special Function Register area in the zero page contains control registers such as I/O ports and timers.

RAM

RAM is used for data storage and for stack area of subroutine calls and interrupts.

ROM

The first 128 bytes and the last 2 bytes of ROM are reserved for device testing and the rest is user area for storing programs.

Interrupt Vector Area

The interrupt vector area contains reset and interrupt vectors.

Zero Page

The 256 bytes from addresses 000016 to 00FF16 are called the zero page area. The internal RAM and the special function registers (SFR) are allocated to this area.

The zero page addressing mode can be used to specify memory and register addresses in the zero page area. Access to this area with only 2 bytes is possible in the zero page addressing mode.

Special Page

The 256 bytes from addresses FF0016 to FFFF16 are called the special page area. The special page addressing mode can be used to specify memory addresses in the special page area. Access to this area with only 2 bytes is possible in the special page addressing mode.

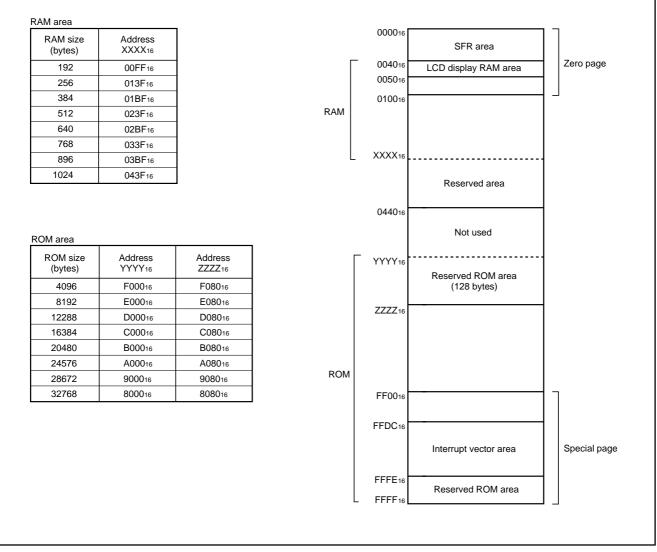


Fig. 2 Memory map diagram

MITSUBISHI MICROCOMPUTERS

3822 Group

000016	Port P0 (P0)	002016	Timer X (low) (TXL)
0001 16	Port P0 direction register (P0D)	002116	Timer X (high) (TXH)
000216	Port P1 (P1)	002216	Timer Y (low) (TYL)
000316	Port P1 direction register (P1D)	002316	Timer Y (high) (TYH)
000416	Port P2 (P2)	002416	Timer 1 (T1)
000516	Port P2 direction register (P2D)	002516	Timer 2 (T2)
000616	Port P3 (P3)	002616	Timer 3 (T3)
000716		002716	Timer X mode register (TXM)
000816	Port P4 (P4)	002816	Timer Y mode register (TYM)
000916	Port P4 direction register (P4D)	002916	Timer 123 mode register (T123M)
000A16	Port P5 (P5)	002A16	output control register (CKOUT)
000B16	Port P5 direction register (P5D)	002B16	
000C16	Port P6 (P6)	002C16	
000D16	Port P6 direction register (P6D)	002D16	
000E16	Port P7 (P7)	002E16	
000F16	Port P7 direction register (P7D)	002F16	
001016		003016	
001116		003116	
001216		003216	
001316		003316	
001416		003416	A-D control register (ADCON)
001516		003516	A-D conversion register (AD)
001616	PULL register A (PULLA)	003616	
0017 16	PULL register B (PULLB)	003716	
001816	Transmit/Receive buffer register (TB/RB)	003816	Segment output enable register (SEG)
	Serial I/O1 status register (SIO1STS)	003916	LCD mode register (LM)
001A16	Serial I/O1 control register (SIO1CON)	003A16	Interrupt edge selection register (INTEDGE)
001B16	UART control register (UARTCON)	003B16	CPU mode register (CPUM)
001C ₁₆	Baud rate generator (BRG)	003C16	Interrupt request register 1(IREQ1)
001D16			Interrupt request register 2(IREQ2)
001E16		003E16	Interrupt control register 1(ICON1)
001F16		003F16	Interrupt control register 2(ICON2)

Fig.3 Memory map of special function register (SFR)

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

I/O PORTS Direction Registers (ports P2, P41–P47, and P5–P7)

The 3822 group has 49 programmable I/O pins arranged in seven I/O ports (ports P0–P2 and P41–P47 and P5–P7). The I/O ports P2, P41–P47, and P5–P7 have direction registers which determine the input/output direction of each individual pin. Each bit in a direction register corresponds to one pin, each pin can be set to be input port or output port.

When "0" is written to the bit corresponding to a pin, that pin becomes an input pin. When "1" is written to that bit, that pin becomes an output pin.

If data is read from a pin set to output, the value of the port output latch is read, not the value of the pin itself. Pins set to input are floating. If a pin set to input is written to, only the port output latch is written to and the pin remains floating.

Direction Registers (ports P0 and P1)

Ports P0 and P1 have direction registers which determine the input /output direction of each individual port.

Each port in a direction register corresponds to one port, each port can be set to be input or output.

When "0" is written to the bit 0 of a direction register, that port becomes an input port. When "1" is written to that port, that port becomes an output port.

Bits 1 to 7 of ports P0 and P1 direction registers are not used.

Ports P3 and P40

These ports are only for input.

Pull-up/Pull-down Control

By setting the PULL register A (address 001616) or the PULL register B (address 001716), ports except for port P40 can control either pull-down or pull-up (pins that are shared with the segment output pins for LCD are pull-down; all other pins are pull-up) with a program.

However, the contents of PULL register A and PULL register B do not affect ports programmed as the output ports.

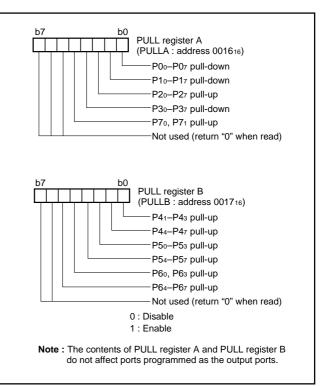


Fig. 4 Structure of PULL register A and PULL register B

MITSUBISHI MICROCOMPUTERS

3822 Group

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Pin	Name	Input/Output	I/O Format	Non-Port Function	Related SFRs	Diagram No
P00/SEG16-		Input/output,	CMOS compatible		PULL register A	
P07/SEG23 Port P0		input level	LCD segment output	Segment output		
P0//SEG23		individual ports	CMOS 3-state output		enable register	
			CMOS compatible		PULL register A	(1)
P10/SEG24-	Port P1	Input/output,	input level	LCD segment output	Segment output	
P17/SEG31		individual ports	CMOS 3-state output		enable register	
			CMOS compatible	Key input(Key-on	PULL register A	
P20 – P27	Port P2	Input/output,	input level	wake up) interrupt	Interrupt control	(2)
		individual bits	CMOS 3-state output	input	register 2	
D0 /050					PULL register A	
P34/SEG12-	Port P3		CMOS compatible	LCD segment output	Segment output	(3)
P37/SEG15		Input	input level		enable register	
P40		-	1		U	(4)
					PULL register B	
P41/					φ output control	(5)
·, 4					register	
					PULL register B	
P42/INT0,	Port P4			External interrupt input	Interrupt edge selection	(2)
P43/INT1					register	(~)
P44/RxD					PULL register B	(6)
P45/TxD					Serial I/O control register	(7)
P46/SCLK1			Serial I/O function I/O	Serial I/O status register	(8)	
P47/SRDY					UART control register	(9)
14//3801		-			OART control register	(3)
P50/INT2,						
P51/INT3				External interrupt input	PULL register B	(2)
			CMOS compatible	Real time port function	Interrupt edge selection	
P52/RTP0,		Input/output,	input level	oputput	register	(10)
P53/RTP1		individual bits				
			emee e claie capar	Timer I/O	PULL register B	(11)
P54/CNTR0	Port P5				Timer X mode register	
					PULL register B	
P55/CNTR1				Timer I/O	Timer X mode register	(12)
					PULL register B	
P56/Tout				Timer output	Timer Y mode register	(13)
					PULL register B	(12)
P57/ADT				A-D trigger input	Timer 123 mode register	
P60/AN0-		-			PULL register B	
P60/AN0- P67/AN7	Port P6			A-D conversion input	-	(14)
		-		Sub-clock	A-D control register	(15)
P70/XCOUT	Port P7				PULL register A	(15)
P71/XCIN				generating circuit I/O	CPU mode register	(16)
COM0-COM3	Common	4	LCD common output		LCD mode register	(17)
SEG0-SEG11	Segment	output	LCD segment output		Segment output	(18)
-	Ŭ				enable register	(,

Note : Make sure that the input level at each pin is either 0 V or VCC during execution of the STP instruction.

When an input level is at an intermediate potential, a current will flow from VCC to VSS through the input-stage gate.

MITSUBISHI MICROCOMPUTERS

3822 Group

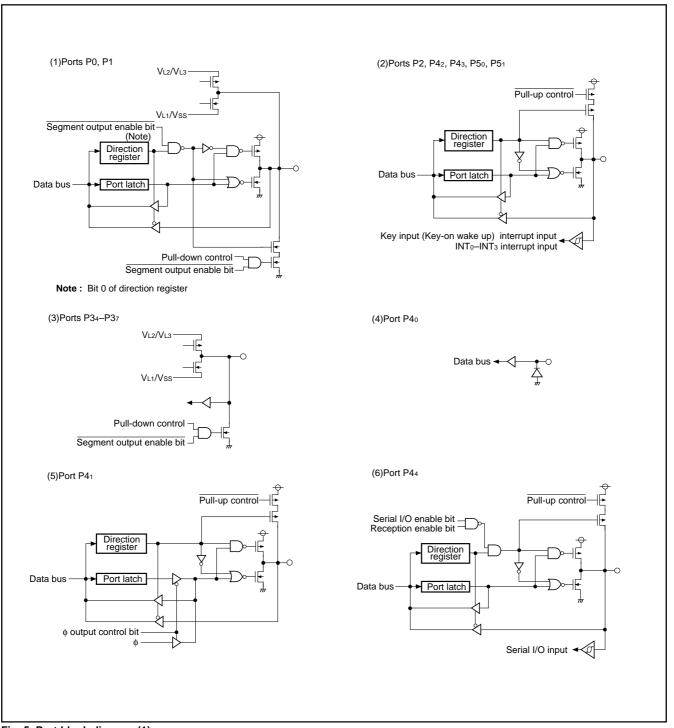


Fig. 5 Port block diagram (1)

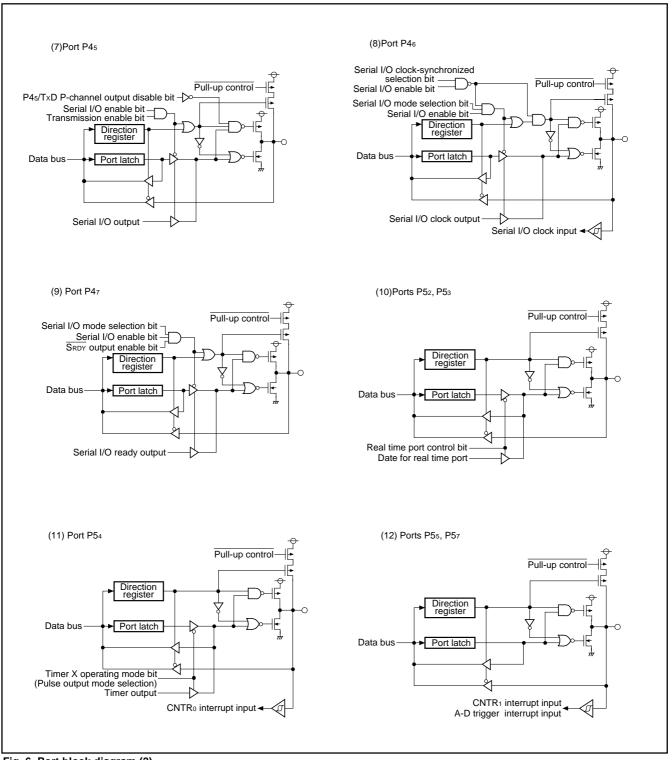


Fig. 6 Port block diagram (2)

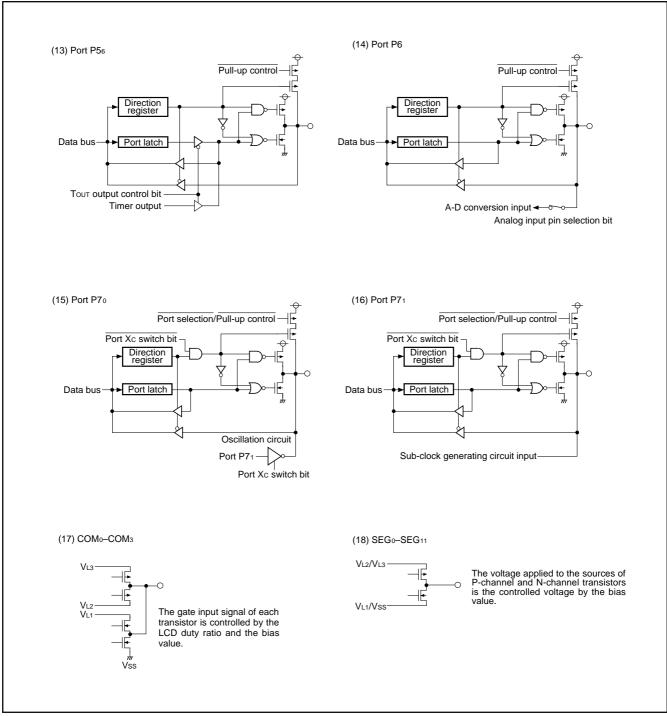


Fig. 7 Port block diagram (3)

INTERRUPTS

Interrupts occur by seventeen sources: eight external, eight internal, and one software.

Interrupt Control

Each interrupt is controlled by an interrupt request bit, an interrupt enable bit, and the interrupt disable flag except for the software interrupt set by the BRK instruction. An interrupt occurs if the corresponding interrupt request and enable bits are "1" and the interrupt disable flag is "0".

Interrupt enable bits can be set or cleared by software.

Interrupt request bits can be cleared by software, but cannot be set by software.

The BRK instruction cannot be disabled with any flag or bit. The I flag disables all interrupts except the BRK instruction interrupt.

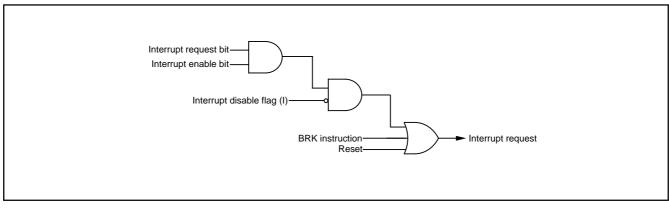
Interrupt Operation

When an interrupt is received, the contents of the program counter and processor status register are automatically stored into the stack. The interrupt disable flag is set to inhibit other interrupts from interfering. The corresponding interrupt request bit is cleared and the interrupt jump destination address is read from the vector table into the program counter.

Notes on Use

When the active edge of an external interrupt (INT0–INT3, CNTR0, or CNTR1) is changed, the corresponding interrupt request bit may also be set. Therefore, please take following sequence;

- (1) Disable the external interrupt which is selected.
- (2) Change the active edge selection.
- (3) Clear the interrupt request bit which is selected to "0".
- (4) Enable the external interrupt which is selected.


Table 1. Interrupt vector addresses and priority

Interrupt Source	Priority	Vector Addre	sses (Note 1)	Interrupt Request	Remarks
Interrupt Source	Phonty	High	Low	Generating Conditions	Remarks
Reset (Note 2)	1	FFFD16	FFFC16	At reset	Non-maskable
ΙΝΤο	0	FFFB16	FFFA16	At detection of either rising or	External interrupt
	2		FFFA16	falling edge of INTo input	(active edge selectable)
INT1	3	FFF916	FFF816	At detection of either rising or	External interrupt
IINT 1	3	FFF916	FFF016	falling edge of INT1 input	(active edge selectable)
Serial I/O	4	FFF716	FFF616	At completion of serial I/O data	Valid when serial I/O1 is selected
reception	4	FFF/16	FFF016	reception	Valid when senal i/OT is selected
Serial I/O				At completion of serial I/O	
	5	FFF516	FFF416	transmit shift or when transmission	Valid when serial I/O1 is selected
transmission				buffer is empty	
Timer X	6	FFF316	FFF216	At timer X underflow	
Timer Y	7	FFF116	FFF016	At timer Y underflow	
Timer 2	8	FFEF16	FFEE16	At timer 2 underflow	
Timer 3	9	FFED16	FFEC16	At timer 3 underflow	
	10	FFEB16	FFEA16	At detection of either rising or	External interrupt
CNTR ₀				falling edge of CNTR0 input	(active edge selectable)
CNTR1	11	FFE916	FFE816	At detection of either rising or	External interrupt
CINTRI		FFE916	FFE016	falling edge of CNTR1 input	(active edge selectable)
Timer 1	12	FFE716	FFE616	At timer 1 underflow	
INT2	13	FFE516	FFE416	At detection of either rising or	External interrupt
IIN I 2	13	FFE016	FFE416	falling edge of INT2 input	(active edge selectable)
INT3	14	FFE316	FFE216	At detection of either rising or	External interrupt
IIN I 3	14	FFE316	FFE216	falling edge of INT3 input	(active edge selectable)
Key input	15	FFE116	FFE016	At falling of conjunction of input	External interrupt
(Key-on wake up)	15	FFE 116	FFEU16	level for port P2 (at input mode)	(valid when an "L" level is applied)
					Valid when ADT interrupt is
ADT				At falling of ADT input	selected External interrupt
	16	FFDF16	FFDE16	L	(valid_at_falling)
A-D conversion			At completion of A-D conversion	Valid when A-D interrupt is	
				A completion of A-D conversion	selected
BRK instruction	17	FFDD16	FFDC16	At BRK instruction execution	Non-maskable software interrupt

Notes 1 : Vector addresses contain interrupt jump destination addresses.

2: Reset function in the same way as an interrupt with the highest priority.

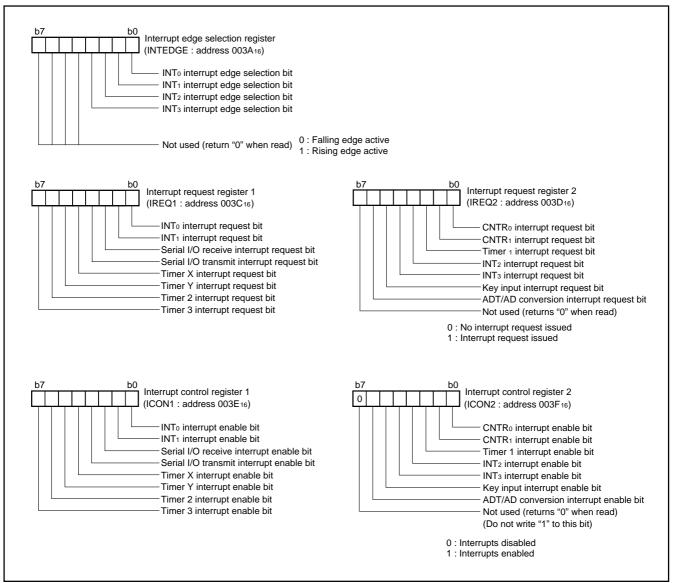


Fig. 9 Structure of interrupt-related registers

MITSUBISHI MICROCOMPUTERS 3822 Group

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Key Input Interrupt (Key-on Wake Up)

A Key input interrupt request is generated by applying "L" level to any pin of port P2 that have been set to input mode. In other words, it is generated when AND of input level goes from "1" to "0". An example of using a key input interrupt is shown in Figure 10, where an interrupt request is generated by pressing one of the keys consisted as an active-low key matrix which inputs to ports P20–P23.

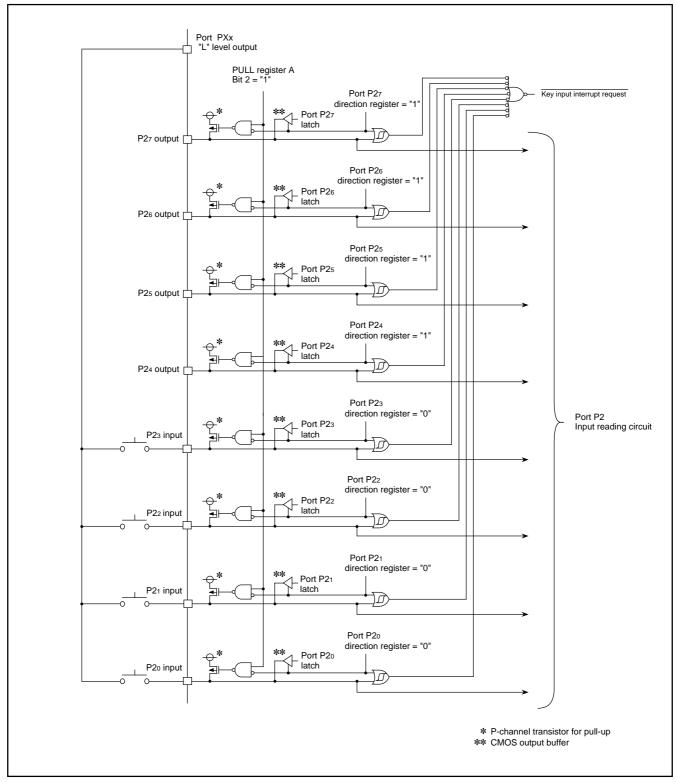


Fig. 10 Connection example when using key input interrupt and port P2 block diagram

MITSUBISHI MICROCOMPUTERS 3822 Group

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

TIMERS

The 3822 group has five timers: timer X, timer Y, timer 1, timer 2, and timer 3. Timer X and timer Y are 16-bit timers, and timer 1, timer 2, and timer 3 are 8-bit timers.

All timers are down count timers. When the timer reaches "0016", an underflow occurs at the next count pulse and the corresponding timer latch is reloaded into the timer and the count is continued. When a timer underflows, the interrupt request bit corresponding to that timer is set to "1". Read and write operation on 16-bit timer must be performed for both high and low-order bytes. When reading a 16-bit timer, read the high-order byte first. When writing to a 16-bit timer, write the low-order byte first. The 16-bit timer cannot perform the correct operation when reading during the write operation, or when writing during the read operation.

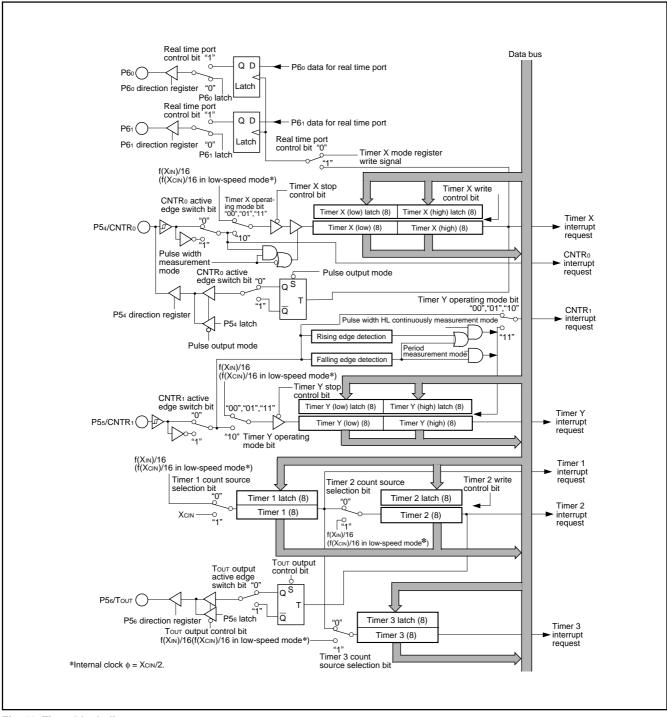


Fig. 11 Timer block diagram

Timer X

Timer X is a 16-bit timer that can be selected in one of four modes and can be controlled the timer X write and the real time port by setting the timer X mode register.

Timer mode

The timer counts f(XIN)/16 (or f(XCIN)/16 in low-speed mode).

Pulse output mode

Each time the timer underflows, a signal output from the CNTRo pin is inverted. Except for this, the operation in pulse output mode is the same as in timer mode. When using a timer in this mode, set the corresponding port P54 direction register to output mode.

Event counter mode

The timer counts signals input through the CNTRo pin.

Except for this, the operation in event counter mode is the same as in timer mode. When using a timer in this mode, set the corresponding port P54 direction register to input mode.

Pulse width measurement mode

The count source is f(XIN)/16 (or f(XCIN)/16 in low-speed mode). If CNTRo active edge switch bit is "0", the timer counts while the input signal of CNTRo pin is at "H". If it is "1", the timer counts while the input signal of CNTRo pin is at "L". When using a timer in this mode, set the corresponding port P54 direction register to input mode.

Timer X Write Control

If the timer X write control bit is "0", when the value is written in the address of timer X, the value is loaded in the timer X and the latch at the same time.

If the timer X write control bit is "1", when the value is written in the address of timer X, the value is loaded only in the latch. The value in the latch is loaded in timer X after timer X underflows.

If the value is written in latch only, unexpected value may be set in the high-order counter when the writing in high-order latch and the underflow of timer X are performed at the same timing.

Note on CNTR0 Interrupt Active Edge Selection

 $\mathsf{CNTR}{}_0$ interrupt active edge depends on the $\mathsf{CNTR}{}_0$ active edge switch bit.

Real Time Port Control

While the real time port function is valid, data for the real time port are output from ports P52 and P53 each time the timer X underflows. (However, after rewriting a data for real time port, if the real time port control bit is changed from "0" to "1", data are output without the timer X.) If the data for the real time port is changed while the real time port function is valid, the changed data are output at the next underflow of timer X.

Before using this function, set the corresponding port direction registers to output mode.

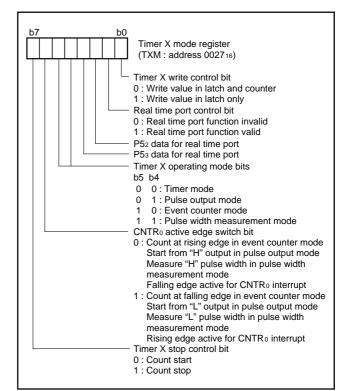


Fig. 12 Structure of timer X mode register

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Timer Y

Timer Y is a 16-bit timer that can be selected in one of four modes.

Timer mode

The timer counts f(XIN)/16 (or f(XCIN)/16 in low-speed mode).

Period measurement mode

CNTR1 interrupt request is generated at rising/falling edge of CNTR1 pin input signal. Simultaneously, the value in timer Y latch is reloaded in timer Y and timer Y continues counting down/Except for the above-mentioned, the operation in period measurement mode is the same as in timer mode.

The timer value just before the reloading at rising/falling of CNTR1 pin input signal is retained until the timer Y is read once after the reload.

The rising/falling timing of CNTR1 pin input signal is found by CNTR1 interrupt. When using a timer in this mode, set the corresponding port P55 direction register to input mode.

Event counter mode

The timer counts signals input through the CNTR1 pin.

Except for this, the operation in event counter mode is the same as in timer mode. When using a timer in this mode, set the corresponding port P55 direction register to input mode.

Pulse width HL continuously measurement mode

CNTR1 interrupt request is generated at both rising and falling edges of CNTR1 pin input signal. Except for this, the operation in pulse width HL continuously measurement mode is the same as in period measurement mode. When using a timer in this mode, set the corresponding port P55 direction register to input mode.

Note on CNTR1 Interrupt Active Edge Selection

CNTR1 interrupt active edge depends on the CNTR1 active edge switch bit. However, in pulse width HL continuously measurement mode, CNTR1 interrupt request is generated at both rising and falling edges of CNTR1 pin input signal regardless of the setting of CNTR1 active edge switch bit.

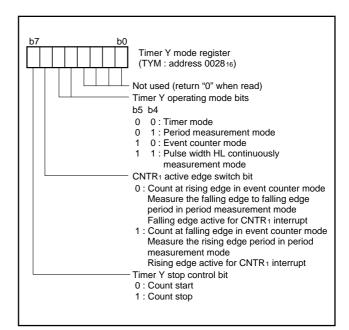


Fig. 13 Structure of timer Y mode register

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Timer 1, Timer 2, Timer 3

Timer 1, timer 2, and timer 3 are 8-bit timers. The count source for each timer can be selected by timer 123 mode register. The timer latch value is not affected by a change of the count source. However, because changing the count source may cause an inadvertent count down of the timer. Therefore, rewrite the value of timer whenever the count source is changed.

Timer 2 Write Control

If the timer 2 write control bit is "0", when the value is written in the address of timer 2, the value is loaded in the timer 2 and the latch at the same time.

If the timer 2 write control bit is "1", when the value is written in the address of timer 2, the value is loaded only in the latch. The value in the latch is loaded in timer 2 after timer 2 underflows.

Timer 2 Output Control

When the timer 2 (TOUT) is output enabled, an inversion signal from pin TOUT is output each time timer 2 underflows.

In this case, set the port P56 shared with the port $\mathsf{T}\mathsf{O}\mathsf{U}\mathsf{T}$ to the output mode.

Note on Timer 1 to Timer 3

When the count source of timer 1 to 3 is changed, the timer counting value may be changed large because a thin pulse is generated in count input of timer . If timer 1 output is selected as the count source of timer 2 or timer 3, when timer 1 is written, the counting value of timer 2 or timer 3 may be changed large because a thin pulse is generated in timer 1 output.

Therefore, set the value of timer in the order of timer 1, timer 2 and timer 3 after the count source selection of timer 1 to 3.

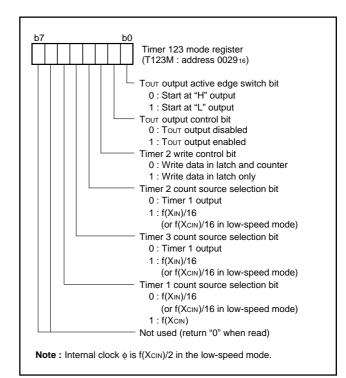


Fig. 14 Structure of timer 123 mode register

SERIAL I/O

Serial I/O can be used as either clock synchronous or asynchronous (UART) serial I/O. A dedicated timer (baud rate generator) is also provided for baud rate generation.

Clock Synchronous Serial I/O Mode

Clock synchronous serial I/O mode can be selected by setting the mode selection bit of the serial I/O control register to "1". For clock synchronous serial I/O, the transmitter and the receiver must use the same clock. If an internal clock is used, transfer is started by a write signal to the TB/RB (address 001816).

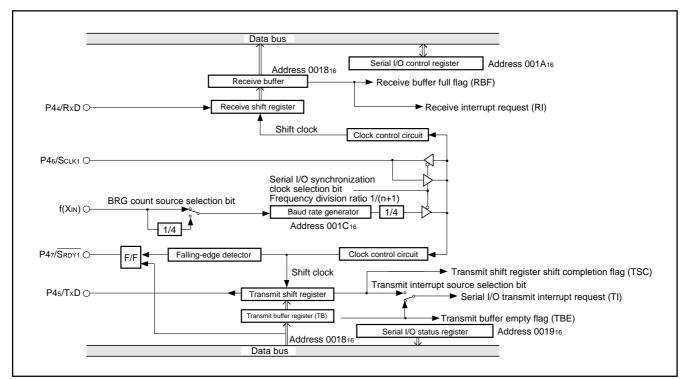
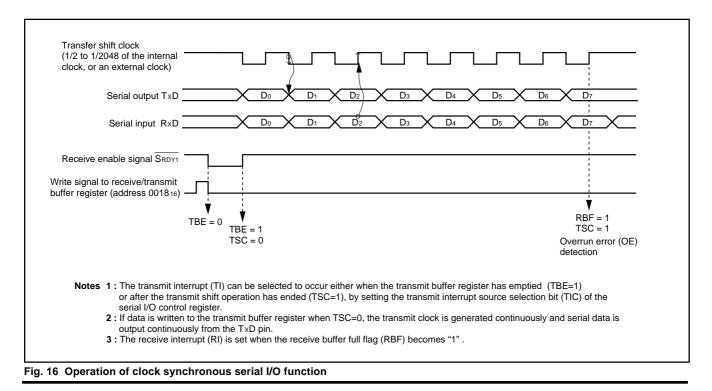



Fig. 15 Block diagram of clock synchronous serial I/O

Asynchronous Serial I/O1 (UART) Mode

Clock asynchronous serial I/O1 mode (UART) can be selected by clearing the serial I/O mode selection bit of the serial I/O control register to "0".

Eight serial data transfer formats can be selected, and the transfer formats used by a transmitter and receiver must be identical. The transmit and receive shift registers each have a buffer regis-

ter, but the two buffers have the same address in memory. Since the shift register cannot be written to or read from directly, transmit data is written to the transmit buffer register, and receive data is read from the receive buffer register.

The transmit buffer register can also hold the next data to be transmitted, and the receive buffer register can hold a character while the next character is being received.

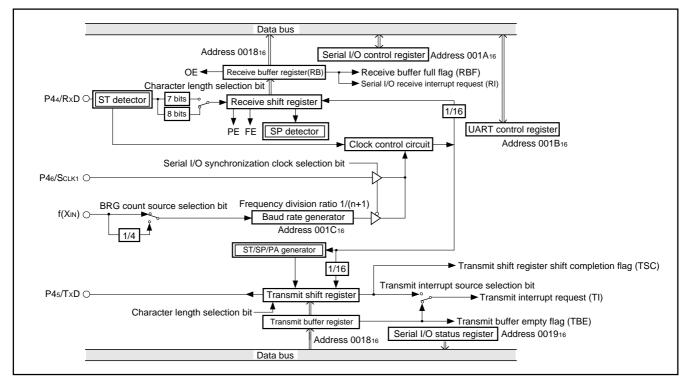


Fig. 17 Block diagram of UART serial I/O

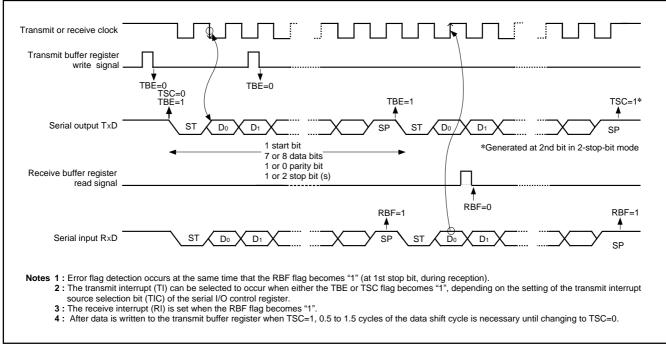


Fig. 18 Operation of UART serial I/O function

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Serial I/O Control Register (SIO1CON) 001A16

The serial I/O control register contains eight control bits for the serial I/O function.

UART Control Register (UARTCON) 001B16

The UART control register consists of four control bits (bits 0 to 3) which are valid when asynchronous serial I/O is selected and set the data format of an data transfer. One bit in this register (bit 4) is always valid and sets the output structure of the P45/TxD pin.

Serial I/O Status Register (SIO1STS) 001916

The read-only serial I/O status register consists of seven flags (bits 0 to 6) which indicate the operating status of the serial I/O function and various errors.

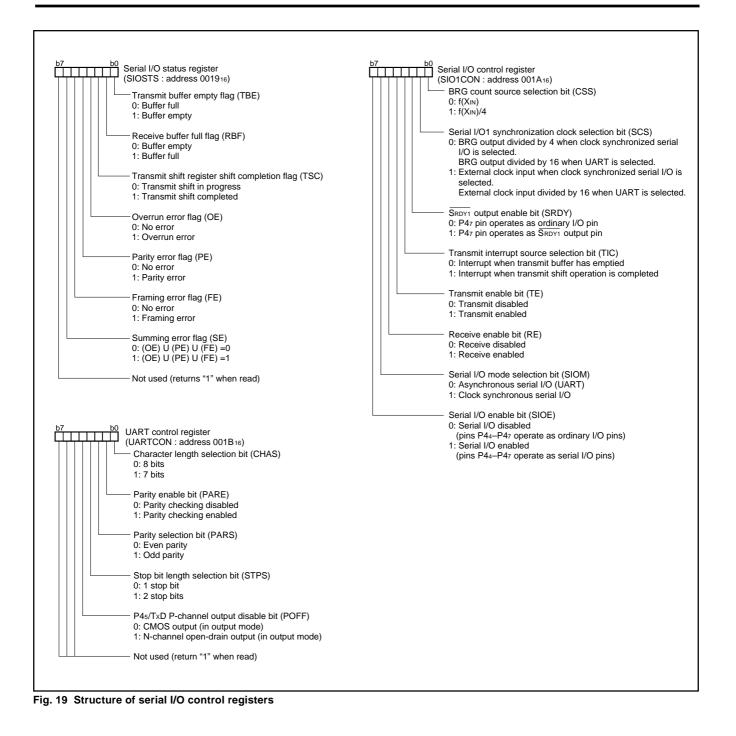
Three of the flags (bits 4 to 6) are valid only in UART mode.

The receive buffer full flag (bit 1) is cleared to "0" when the receive buffer is read.

If there is an error, it is detected at the same time that data is transferred from the receive shift register to the receive buffer register, and the receive buffer full flag is set. A write to the serial I/O status register clears all the error flags OE, PE, FE, and SE (bit 3 to bit 6, respectively). Writing "0" to the serial I/O enable bit SIOE (bit 7 of the Serial I/O Control Register) also clears all the status flags, including the error flags.

All bits of the serial I/O status register are initialized to "0" at reset, but if the transmit enable bit (bit 4) of the serial I/O control register has been set to "1", the transmit shift completion flag (bit 2) and the transmit buffer empty flag (bit 0) become "1".

Transmit Buffer/Receive Buffer Register (TB/ RB) 001816


The transmit buffer register and the receive buffer are located at the same address. The transmit buffer register is write-only and the receive buffer register is read-only. If a character bit length is 7 bits, the MSB of data stored in the receive buffer register is "0".

Baud Rate Generator (BRG) 001C16

The baud rate generator determines the baud rate for serial transfer.

The baud rate generator divides the frequency of the count source by 1/(n + 1), where n is the value written to the baud rate generator.

A-D CONVERTER

The functional blocks of the A-D converter are described below.

A-D Conversion Register (AD) 003516

The A-D conversion register is a read-only register that contains the result of an A-D conversion. When reading this register during an A-D conversion, the previous conversion result is read.

A-D Control Register (ADCON) 003416

The A-D control register controls the A-D conversion process. Bits 0 to 2 of this register select specific analog input pins. Bit 3 signals the completion of an A-D conversion. The value of this bit remains at "0" during an A-D conversion, then changes to "1" when the A-D conversion is completed.

Writing "0" to this bit starts the A-D conversion. Bit 4 controls the transistor which breaks the through current of the resistor ladder. When bit 5, which is the AD external trigger valid bit, is set to "1", this bit enables A-D conversion even by a falling edge of an ADT input. Set ports which share with ADT pins to input when using an A-D external trigger.

Comparison Voltage Generator

The comparison voltage generator divides the voltage between AVss and VREF by 256, and outputs the divided voltages.

Channel Selector

The channel selector selects one of the input ports P67/AN7 to P60/AN0.

Comparator and Control Circuit

The comparator and control circuit compares an analog input voltage with the comparison voltage and stores the result in the A-D conversion register. When an A-D conversion is completed, the control circuit sets the AD conversion completion bit and the AD interrupt request bit to "1".

Note that the comparator is constructed linked to a capacitor, so set f(XIN) to at least 500 kHz during A-D conversion.

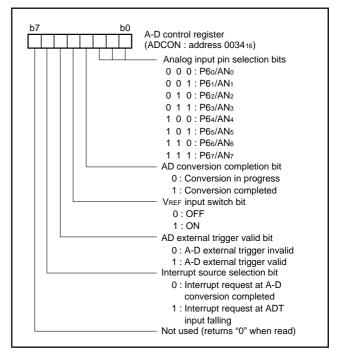


Fig. 20 Structure of A-D control register

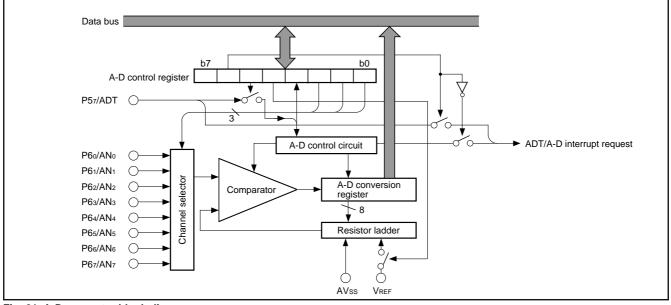


Fig. 21 A-D converter block diagram

LCD DRIVE CONTROL CIRCUIT

The 3822 group has the built-in Liquid Crystal Display (LCD) drive control circuit consisting of the following.

- LCD display RAM
- •Segment output enable register
- •LCD mode register
- Selector
- Timing controller
- Common driver
- Segment driver
- Bias control circuit

A maximum of 32 segment output pins and 4 common output pins can be used.

Up to 128 pixels can be controlled for LCD display. When the LCD enable bit is set to "1" after data is set in the LCD mode register,

the segment output enable register and the LCD display RAM, the LCD drive control circuit starts reading the display data automatically, performs the bias control and the duty ratio control, and displays the data on the LCD panel.

Table 2. Maximum number of display pixels at each duty ratio

Duty ratio	Maximum number of display pixel	
2	64 dots	
-	or 8 segment LCD 8 digits	
3	96 dots	
5	or 8 segment LCD 12 digits	
4	128 dots	
4	or 8 segment LCD 16 digits	

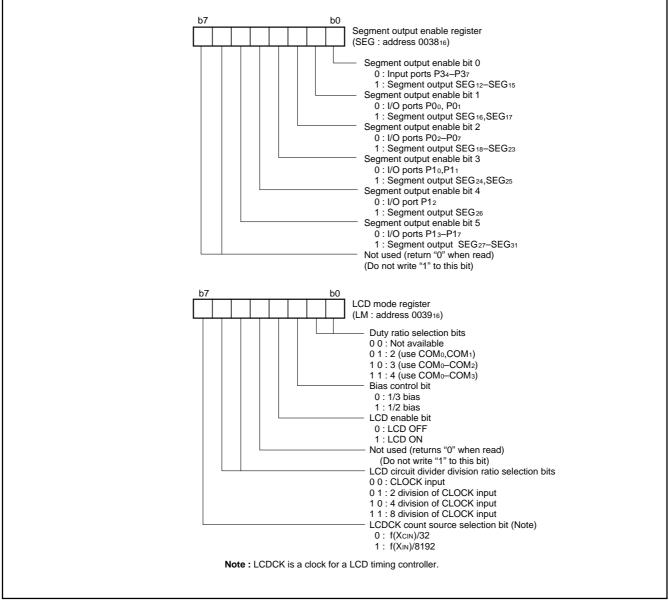
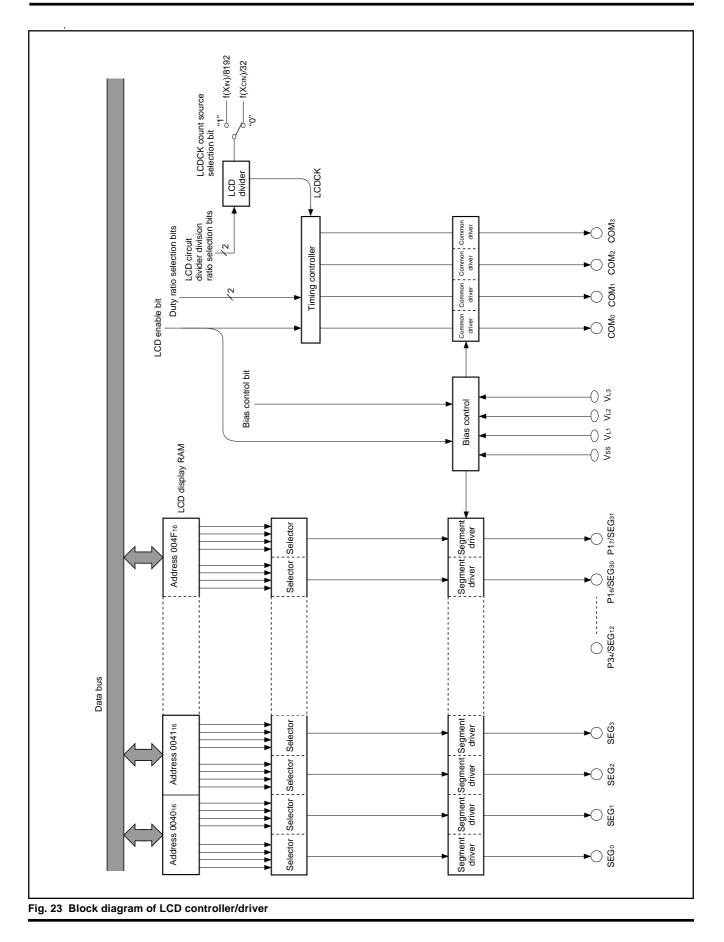



Fig. 22 Structure of segment output enable register and LCD mode register

MITSUBISHI MICROCOMPUTERS

3822 Group

Bias Control and Applied Voltage to LCD Power Input Pins

To the LCD power input pins (VL1–VL3), apply the voltage shown in Table 3 according to the bias value.

Select a bias value by the bias control bit (bit 2 of the LCD mode register).

Common Pin and Duty Ratio Control

The common pins (COM0–COM3) to be used are determined by duty ratio.

Select duty ratio by the duty ratio selection bits (bits 0 and 1 of the LCD mode register).

Table 3. Bias control and applied voltage to VL1-VL3

Bias value	Voltage value	
1/3 bias	VL3=VLCD VL2=2/3 VLCD VL1=1/3 VLCD	
1/2 bias VL3=VLCD VL2=VL1=1/2 VLCD		

Note 1 : VLCD is the maximum value of supplied voltage for the LCD panel.

Table 4. Duty ratio control and common pins used

Duty	Duty ratio selection bit		Common pins used
ratio	Bit 1	Bit 0	Common pins used
2	0	1	COM ₀ , COM ₁ (Note 1)
3	1	0	COM0-COM2 (Note 2)
4	1	1	COM0–COM3

Notes 1 : COM2 and COM3 are open

2: COM3 is open

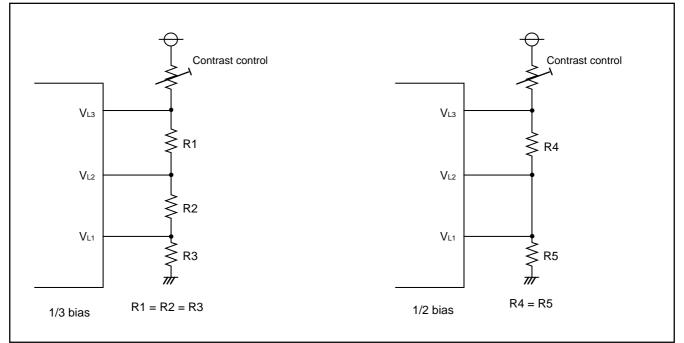


Fig. 24 Example of circuit at each bias

LCD Display RAM

Address 004016 to 004F16 is the designated RAM for the LCD display. When "1" are written to these addresses, the corresponding segments of the LCD display panel are turned on.

LCD Drive Timing

The LCDCK timing frequency (LCD drive timing) is generated internally and the frame frequency can be determined with the following equation;

f(LCDCK)= (frequency of count source for LCDCK) (divider division ratio for LCD)

(divider division) f(LCDCK)

Frame frequency=

Bit	7	6	5	4	3	2	1	0
`	COM ₃	COM ₂	COM ₁	COM ₀	COM ₃	COM ₂	COM ₁	COM
004016	SEG1				SEG₀			
0041 16	SEG₃				SEG ₂			
004216	SEG₅				SEG4			
004316	SEG7				SEG ₆			
004416	SEG ₉				SEG8			
004516	SEG11				SEG10			
004616	SEG13				SEG ₁₂			
004716	SEG15				SEG14			
004816	SEG17				SEG16			
004916	SEG19				SEG18			
004A16	SEG21				SEG20			
004B16	SEG23				SEG22			
004C16	SEG25				SEG24			
004D16	SEG27				SEG ₂₆			
004E16	SEG29				SEG ₂₈			
004F16	SEG31				SEG30			

Fig. 25 LCD display RAM map

MITSUBISHI MICROCOMPUTERS

3822 Group

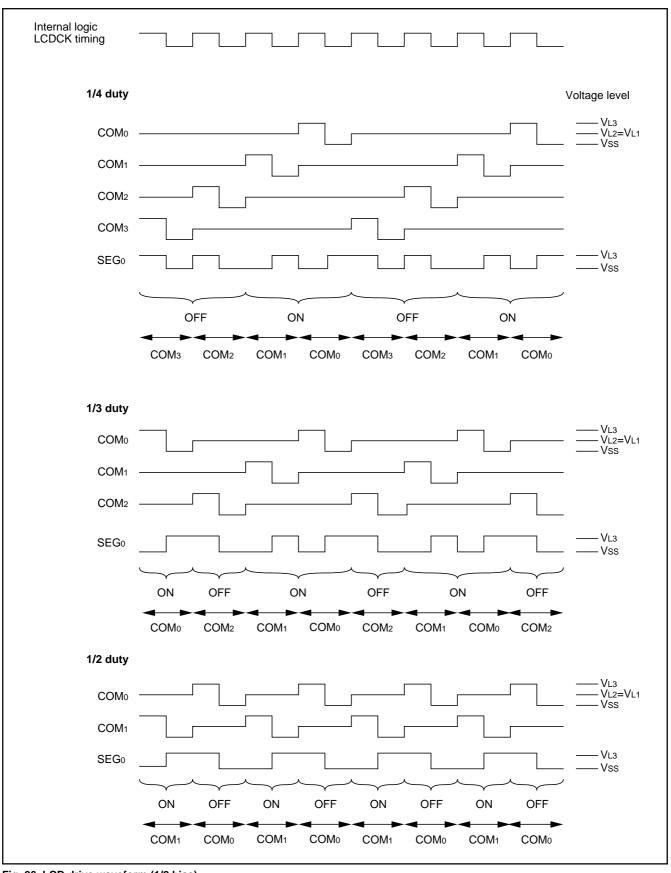


Fig. 26 LCD drive waveform (1/2 bias)

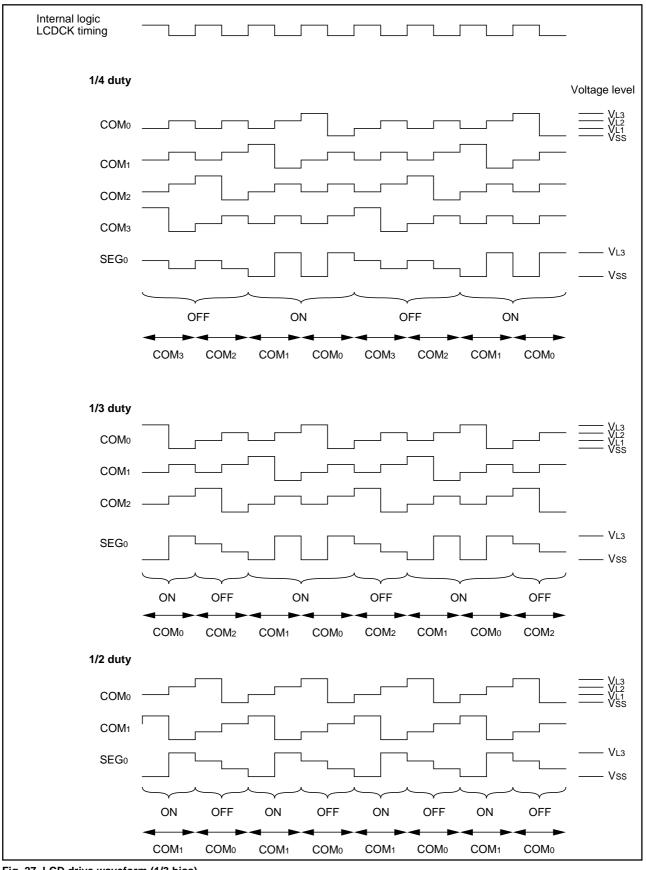


Fig. 27 LCD drive waveform (1/3 bias)

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

$\boldsymbol{\varphi}$ CLOCK OUTPUT FUNCTION

The internal system clock ϕ can be output from port P41 by setting the ϕ output control register. Set bit 1 of the port P4 direction register to when outputting ϕ clock.

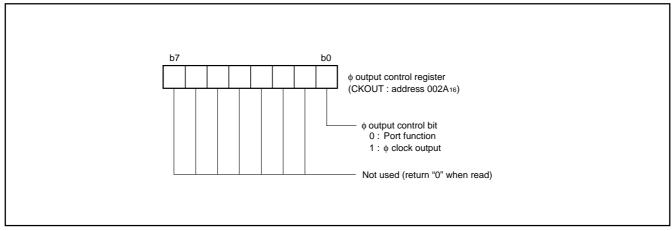


Fig. 28 Structure of $\boldsymbol{\phi}$ output control register

MITSUBISHI MICROCOMPUTERS 3822 Group

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

RESET CIRCUIT

To reset the microcomputer, $\overline{\text{RESET}}$ pin should be held at an "L" level for 2 µs or more. Then the $\overline{\text{RESET}}$ pin is returned to an "H" level (the power source voltage should be between 2.5 V and 5.5 V, and the oscillation should be stable), reset is released. In order to give the XIN clock time to stabilize, internal operation does not begin until after 8200 XIN clock cycles (timer 1 and timer 2 are connected together and 512 cycles of f(XIN)/16) are complete. After the reset is completed, the program starts from the address contained in address FFFD16 (high-order byte) and address FFFC16 (low-order byte).

Make sure that the reset input voltage is less than 0.5 V for Vcc of 2.5 V (Extended operating temperature version: the reset input voltage is less than 0.6V for Vcc of 3.0V).

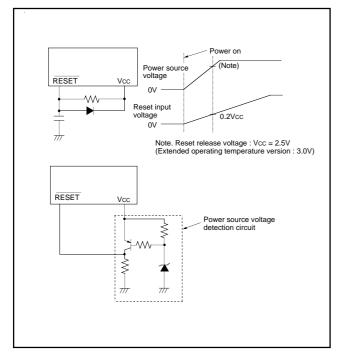


Fig. 29 Example of reset circuit

Address Register content	s							
(1) Port P0 direction register (000116) ••• 0016								
(2) Port P1 direction register (000316) ••• 0016								
(3) Port P2 direction register (000516) ••• 0016								
(4) Port P4 direction register (000916) ••• 0016								
(5) Port P5 direction register (000B16) ••• 0016								
(6) Port P6 direction register (000D16) ••• 0016								
(7) Port P7 direction register (000F16) ••• 0016								
(8) PULL register A (001616) 0 0 0 1 0	1 1							
(9) PULL register B (0017 ₁₆) ••• 00 ₁₆								
(10) Serial I/O status register (001916) ••• 1 0 0 0 0 0	0 0							
(11) Serial I/O control register (001A16) ••• 0016								
(12) UART control register (001B ₁₆) 1 1 1 0 0 0	0 0							
(13) Timer X (low) (002016) ••• FF16								
(14) Timer X (high) (002116) ••• FF16								
(15) Timer Y (low) (002216) ••• FF16								
(16) Timer Y (high) (002316) ••• FF16								
(17) Timer 1 (0024 ₁₆) FF ₁₆								
(18) Timer 2 (002516) ••• 0116								
(19) Timer 3 (002616) ••• FF16								
(20) Timer X mode register (002716) 0016								
(21) Timer Y mode register (002816) •••• 0016								
(22) Timer 123 mode register (002916) 0016								
(23)								
(24) A-D control register (0034 ₁₆)	0 0							
(25) Segment output enable register (003816) •••• 0016								
(26) LCD mode register (003916) ••• 0016								
(27) Interrupt edge selection register (003A16) ••• 0016								
(28) CPU mode register (003B ₁₆) 0 1 0 0 1 0	0 0							
(29) Interrupt request register 1 (003C16) ••• 0016								
(30) Interrupt request register 2 (003D16) ••• 0016								
(31) Interrupt control register 1 (003E16) ••• 0016								
(32) Interrupt control register 2 (003F16) ••• 0016								
(33) Processor status register (PS) $x x x x 1$	xx							
(34) Program counter (PCH) Contents of address FF	FD 16							
(PCL) Contents of address FF	FC 16							
Note X : Undefined The contents of all other registers and RAM are undefined after reset, so they must be initialized by software.								

Fig. 30 Internal state of microcomputer after reset

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

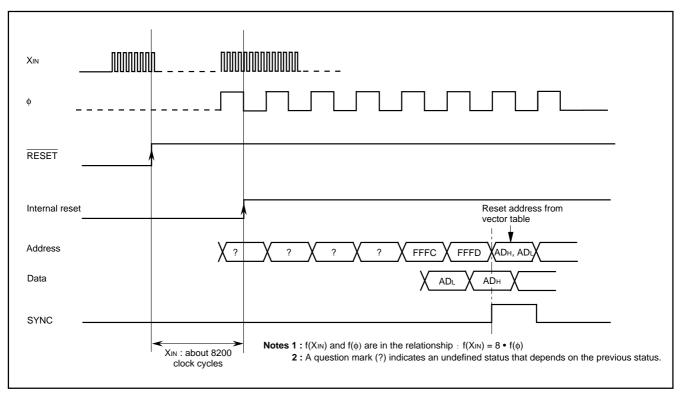


Fig. 31 Reset sequence

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

CLOCK GENERATING CIRCUIT

The 3822 group has two built-in oscillation circuits. An oscillation circuit can be formed by connecting a resonator between XIN and XOUT (XCIN and XCOUT). Use the circuit constants in accordance with the resonator manufacturer's recommended values. No external resistor is needed between XIN and XOUT since a feed-back resistor exists on-chip. However, an external feed-back resistor is needed between XCIN and XCOUT.

To supply a clock signal externally, input it to the XIN pin and make the XOUT pin open. The sub-clock XCIN-XCOUT oscillation circuit cannot directly input clocks that are externally generated. Accordingly, be sure to cause an external resonator to oscillate.

Immediately after poweron, only the XIN oscillation circuit starts oscillating, and XCIN and XCOUT pins function as I/O ports. The pull-up resistor of XCIN and XCOUT pins must be made invalid to use the sub-clock.

Frequency Control

Middle-speed mode

The internal clock ϕ is the frequency of XIN divided by 8. After reset, this mode is selected.

High-speed mode

The internal clock ϕ is half the frequency of XIN.

Low-speed mode

- The internal clock ϕ is half the frequency of XCIN.
- A low-power consumption operation can be realized by stopping the main clock XIN in this mode. To stop the main clock, set bit 5 of the CPU mode register to "1".

When the main clock XIN is restarted, set enough time for oscillation to stabilize by programming.

Note: If you switch the mode between middle/high-speed and lowspeed, stabilize both XIN and XCIN oscillations. The sufficient time is required for the sub-clock to stabilize, especially immediately after poweron and at returning from stop mode. When switching the mode between middle/highspeed and low-speed, set the frequency on condition that f(XIN)>3f(XCIN).

Oscillation Control

Stop mode

If the STP instruction is executed, the internal clock ϕ stops at an "H" level, and XIN and XCIN oscillators stop. Timer 1 is set to "FF16" and timer 2 is set to "0116".

Either XIN or XCIN divided by 16 is input to timer 1 as count source, and the output of timer 1 is connected to timer 2.

The bits of the timer 123 mode register except bit 4 are cleared to "0". Set the timer 1 and timer 2 interrupt enable bits to disabled ("0") before executing the STP instruction.

Oscillator restarts at reset or when an external interrupt is received, but the internal clock ϕ is not supplied to the CPU until timer 2 underflows. This allows time for the clock circuit oscillation to stabilize.

Wait mode

If the WIT instruction is executed, the internal clock ϕ stops at an "H" level. The states of XIN and XCIN are the same as the state before the executing the WIT instruction. The internal clock restarts at reset or when an interrupt is received. Since the oscillator does not stop, normal operation can be started immediately after the clock is restarted.

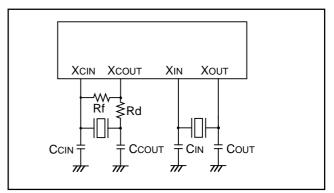


Fig. 32 Ceramic resonator circuit

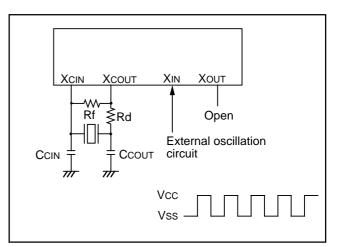


Fig. 33 External clock input circuit

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

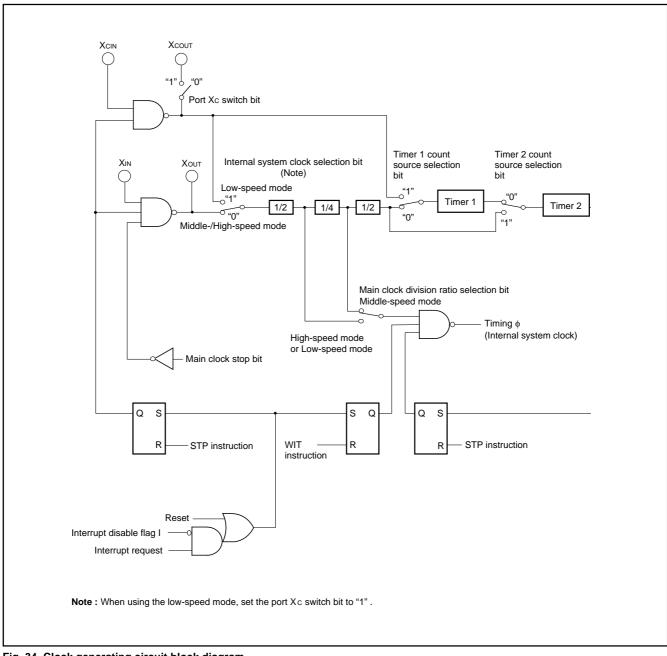


Fig. 34 Clock generating circuit block diagram

.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

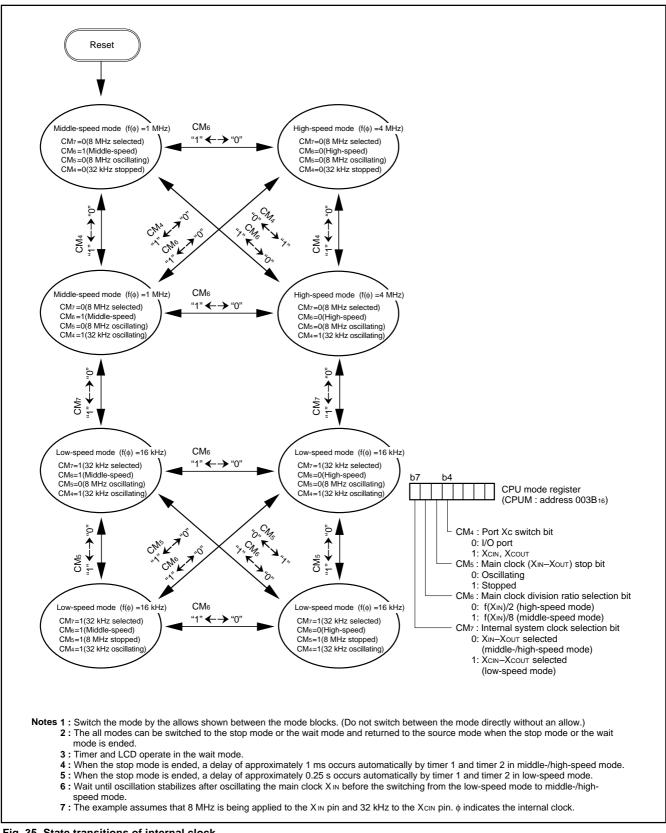


Fig. 35 State transitions of internal clock

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

NOTES ON PROGRAMMING Processor Status Register

The contents of the processor status register (PS) after a reset are undefined, except for the interrupt disable flag (I) which is "1". After a reset, initialize flags which affect program execution.

In particular, it is essential to initialize the index X mode (T) and the decimal mode (D) flags because of their effect on calculations.

Interrupt

The contents of the interrupt request bits do not change immediately after they have been written. After writing to an interrupt request register, execute at least one instruction before performing a BBC or BBS instruction.

Decimal Calculations

To calculate in decimal notation, set the decimal mode flag (D) to "1", then execute an ADC or SBC instruction. Only the ADC and SBC instructions yield proper decimal results. After executing an ADC or SBC instruction, execute at least one instruction before executing a SEC, CLC, or CLD instruction.

In decimal mode, the values of the negative (N), overflow (V), and zero (Z) flags are invalid.

The carry flag can be used to indicate whether a carry or borrow has occurred. Initialize the carry flag before each calculation. Clear the carry flag before an ADC and set the flag before an SBC.

Timers

If a value n (between 0 and 255) is written to a timer latch, the frequency division ratio is 1/(n + 1).

Multiplication and Division Instructions

The index mode (T) and the decimal mode (D) flags do not affect the MUL and DIV instruction.

The execution of these instructions does not change the contents of the processor status register.

Ports

The contents of the port direction registers cannot be read. The following cannot be used:

- The data transfer instruction (LDA, etc.)
- \bullet The operation instruction when the index X mode flag (T) is "1"
- The addressing mode which uses the value of a direction register as an index
- The bit-test instruction (BBC or BBS, etc.) to a direction register
- The read-modify-write instruction (ROR, CLB, or SEB, etc.) to a direction register

Use instructions such as LDM and STA, etc., to set the port direction registers.

Serial I/O

In clock synchronous serial I/O, if the receive side is using an external clock and it is to output the $\overline{\text{SRDY}}$ signal, set the transmit enable bit, the receive enable bit, and the $\overline{\text{SRDY}}$ output enable bit to "1".

Serial I/O continues to output the final bit from the TxD pin after transmission is completed.

A-D Converter

The comparator uses internal capacitors whose charge will be lost if the clock frequency is too low.

Make sure that f(XIN) is at least 500 kHz during an A-D conversion. Do not execute the STP or WIT instruction during an A-D conversion.

Instruction Execution Time

The instruction execution time is obtained by multiplying the frequency of the internal clock ϕ by the number of cycles needed to execute an instruction.

The number of cycles required to execute an instruction is shown in the list of machine instructions.

The frequency of the internal clock ϕ is half of the XIN frequency.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

DATA REQUIRED FOR MASK ORDERS

The following are necessary when ordering a mask ROM production:

- (1) Mask ROM Order Confirmation Form
- (2) Mark Specification Form
- (3) Data to be written to ROM, in EPROM form (three identical copies)

ROM PROGRAMMING METHOD

The built-in PROM of the blank One Time PROM version and builtin EPROM version can be read or programmed with a generalpurpose PROM programmer using a special programming adapter. Set the address of PROM programmer in the user ROM area.

Package	Name of Programming Adapter
80P6N-A	PCA4738F-80A
80P6S-A	PCA4738G-80
80P6D-A	PCA4738H-80
80D0	PCA4738L-80A

The PROM of the blank One Time PROM version is not tested or screened in the assembly process and following processes. To ensure proper operation after programming, the procedure shown in Figure 36 is recommended to verify programming.

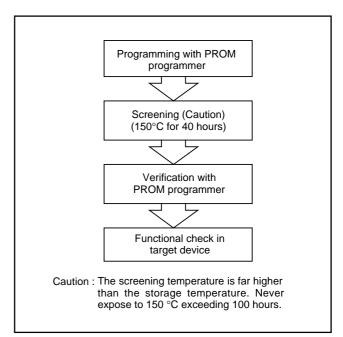


Fig. 36 Programming and testing of One Time PROM version

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Power source voltage		-0.3 to 7.0	V
VI	Input voltage P00–P07, P10–P17, P20–P27, P34–P37, P40–P47, P50–P57, P60–P67, P70, P71	All voltages are based on Vss.	-0.3 to Vcc +0.3	V
VI	Input voltage VL1	Output transistors are cut off.	-0.3 to VL2	V
VI	Input voltage VL2		VL1 to VL3	V
VI	Input voltage VL3		VL2 to VCC +0.3	V
VI	Input voltage RESET, XIN	_	-0.3 to Vcc +0.3	V
		At output port	-0.3 to Vcc +0.3	V
Vo	Output voltage P00–P07, P10–P17	At segment output	-0.3 to VL3 +0.3	V
Vo	Output voltage P34–P37	At segment output	-0.3 to VL3 +0.3	V
Vo	Output voltage P20–P27, P41–P47, P50–P57, P60–P67, P70, P71		-0.3 to Vcc +0.3	V
Vo	Output voltage SEG0–SEG11		-0.3 to VL3 +0.3	V
Vo	Output voltage XOUT		-0.3 to Vcc +0.3	V
Pd	Power dissipation	Ta = 25 °C	300	mW
Topr	Operating temperature		-20 to 85 (Note 1)	°C
Tstg	Storage temperature		-40 to 125 (Note 2)	°C

Notes 1 : Extended operating temperature version : –40 to $85^{\circ}C$

2 : Extended operating temperature version : –65 to 150°C

RECOMMENDED OPERATING CONDITIONS (Vcc = 2.5 to 5.5 V, Ta = -20 to 85°C, unless otherwise noted. Extended operating temperature version : Vcc = 3.0 to 5.5 V, Ta = -40 to -20°C and Vcc = 2.5 to 5.5V, Ta = -20 to 85°C)

Symbol	Parameter			Limits		Unit	
Symbol		Falameter		Min.	Тур.	Max.	Unit
		High-speed mode f(XIN)=8 MHz	4.0	5.0	5.5	
		Middle-speed mode	Ta = −20 to 85°C	2.5	5.0	5.5	
Vcc	Power source voltage	f(XIN)=8 MHz	Ta = −40 to −20°C	3.0	5.0	5.5	l v
		Low-speed mode	Ta = −20 to 85°C	2.5	5.0	5.5	
	Low-speed mode	$T_a = -40 \text{ to } -20^{\circ}\text{C}$	3.0	5.0	5.5		
Vss	Power source voltage				0		V
Vref	A-D conversion reference in	nput voltage		2		Vcc	V
AVss	Analog power source voltage	ge			0		V
VIA	Analog input voltage AN0-A	AM7		AVss		Vcc	V
Viн	"H" input voltage	P00–P07, P10–P17, P3 P52, P53, P56, P60–P6	4–P37, P40, P41, P45, P47, 7, P70, P71 (CM4=0)	0.7 Vcc		Vcc	V
Vih	"H" input voltage	P20-P27, P42-P44, P4	6, P50, P51, P54, P55, P57	0.8 Vcc		Vcc	V
Vih	"H" input voltage	RESET		0.8 Vcc		Vcc	V
Vih	"H" input voltage	Xin		0.8 Vcc		Vcc	V
VIL	"L" input voltage	P00–P07, P10–P17, P3 P52, P53, P56, P60–P6	4–P37, P40, P41, P45, P47, 7, P70, P71 (CM4=0)	0		0.3 Vcc	V
VIL	"L" input voltage	P20-P27, P42-P44, P4	6, P50, P51, P54, P55, P57	0		0.2 Vcc	V
VIL	"L" input voltage	RESET		0		0.2 Vcc	V
VIL	"L" input voltage	Xin		0		0.2 Vcc	V

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Currents al		Deveneter		Limits		11
Symbol		Parameter	Min.	Тур.	Max.	Unit
Σ IOH(peak)	"H" total peak output current	P00-P07, P10-P17, P20-P27 (Note 1)			-40	mA
Σ IOH(peak)	"H" total peak output current	P41-P47,P50-P57, P60-P67, P70, P71 (Note 1)			-40	mA
Σ IOL(peak)	"L" total peak output current	P00-P07, P10-P17, P20-P27 (Note 1)			40	mA
Σ IOL(peak)	"L" total peak output current	P41-P47,P50-P57, P60-P67, P70, P71 (Note 1)			40	mA
Σ IOH(avg)	"H" total average output current	P00-P07, P10-P17, P20-P27 (Note 1)			-20	mA
Σ IOH(avg)	"H" total average output current	P41-P47,P50-P57, P60-P67, P70, P71 (Note 1)			-20	mA
Σ IOL(avg)	"L" total average output current	P00-P07, P10-P17, P20-P27 (Note 1)			20	mA
Σ IOL(avg)	"L" total average output current	P41-P47,P50-P57, P60-P67, P70, P71 (Note 1)			20	mA
IOH(peak)	"H" peak output current	P00-P07, P10-P17 (Note 2)			-2	mA
IOH(peak)	"H" peak output current	P20-P27, P41-P47, P50-P57, P60-P67, P70, P71 (Note 2)			-5	mA
IOL(peak)	"L" peak output current	P00-P07, P10-P17 (Note 2)			5	mA
IOL(peak)	"L" peak output current	P20-P27, P41-P47, P50-P57, P60-P67, P70, P71 (Note 2)			10	mA
IOH(avg)	"H" average output current	P00-P07, P10-P17 (Note 3)			-1.0	mA
IOH(avg)	"H" average output current	P20-P27, P41-P47, P50-P57, P60-P67, P70, P71 (Note 3)			-2.5	mA
IOL(avg)	"L" average output current	P00-P07, P10-P17 (Note 3)			2.5	mA
IOL(avg)	"L" average output current	P20–P27, P40–P47, P50–P57, P60–P67, P70, P71 (Note 3)			5.0	mA
f(CNTR0)	Input frequency for timers X and Y	$4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$			4.0	MHz
f(CNTR1)	(duty cycle 50 %)	$2.5 \text{ V} \leq \text{Vcc} \leq 4.0 \text{ V}$			(2XVcc)-4	MHz
		High-speed mode (4.0 V \leq VCC \leq 5.5 V)			8.0	MH:
f(XIN)	Main clock input oscillation	High-speed mode (2.5 V \leq Vcc \leq 4.0 V)			(4XVcc)-8	MH
	frequency (Note 4)	Middle-speed mode			8.0	MH:
f(XCIN)	Sub-clock input oscillation frequ	ency (Note 4, 5)		32.768	50	kHz

RECOMMENDED OPERATING CONDITIONS (Vcc = 2.5 to 5.5 V, Ta = -20 to 85° C, unless otherwise noted.

Notes 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured over 100 ms. The total peak current is the peak value of all the currents.

2 : The peak output current is the peak current flowing in each port.

3 : The average output current is an average value measured over 100 ms.

4: When the oscillation frequency has a duty cycle of 50%.

5 : When using the microcomputer in low-speed mode, make sure that the sub-clock input oscillation frequency on condition that $f(X_{CIN}) < f(X_{IN})/3$.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Symbol		Parameter	Test on	nditions		Limits		- Uni
Symbol		Falameter	Test co	numons	Min.	Тур.	Max.	
			IOH = -2.5 mA		Vcc-2.0			V
Vон	"H" output voltage	P00-P07, P10-P17	Iон = -0.6 mA		Vcc-1.0			
			VCC = 2.5 V		VCC-1.0			V
			Iон = -5 mA		Vcc-2.0			V
Vон	"H" output voltage	P20-P27, P41-P47, P50-P57,	IOH = -1.25 mA		Vcc-0.5			V
VOH		P60–P67, P70, P71 (Note 1)	IOH = -1.25 mA		Vcc-1.0			V
			VCC = 2.5 V		VCC-1.0			^v
			IOL = 5 mA				2.0	V
Vol	"I " output voltago	P00–P07, P10–P17	IOL = 1.25 mA				0.5	V
VOL		F00-F07, F10-F17	IOL = 1.25 mA				1.0	V
			Vcc = 2.5 V				1.0	v
			IOL = 10 mA				2.0	V
Vol	"L" output voltage	P20-P27, P41-P47, P50-P57,	IOL = 2.5 mA				0.5	V
VOL		P60-P67, P70, P71 (Note 1)	IOL = 2.5 mA					
			VCC = 2.5 V				1.0	V
Vt+ – Vt–	Hysteresis	CNTR0, CNTR1, INT0-INT3, P20-P27				0.5		V
Vt+ – Vt–	Hysteresis	RxD, Sclk				0.5		V
Vt+ – Vt–	Hysteresis	RESET	RESET: Vcc=2.5	V to 5.5 V		0.5		V
			VI = VCC					
			Pull-downs "off"				5.0	μ/
			VCC= 5.0 V,	Ta = −20 to 85°C	30	70	140	
			VI = VCC	Ta = -20 to 05 C				μ.
Ін	"H" input current	P00–P07, P10–P17, P30–P37	Pull-downs "on"	$T_a = -40 \text{ to } -20^{\circ}\text{C}$		70	170	
			VCC= 3.0 V,	Ta = −20 to 85°C	6.0	25	45	
			VI = VCC	14- 20100000	0.0	25	45	μ/
			Pull-downs "on"	$T_a = -40 \text{ to } -20^{\circ}\text{C}$		25	55	
Ін	"H" input current	P20–P27, P40–P47, P50–P57, P60–P67, P70, P71	VI = VCC				5.0	μA
Ін	"H" input current	RESET	VI = VCC				5.0	μA
Іін	"H" input current	XIN	VI = VCC			4.0		μA
lı∟	"L" input current	P00–P07, P10–P17, P34–P37, P40					-5.0	μA
			VI = VSS				-5.0	/
			Pull-ups "off"				-5.0	μΑ
lı∟	"L" input current	P20-P27, P41-P47, P50-P57,	VCC= 5.0 V, VI = V	/ss	-30	-70	-140	
IIL		P60–P67, P70–P77	Pull-ups "on"			-10	-140	μΑ
			VCC= 3.0 V, VI = V	/ss	-6	05	45	
			Pull-ups "on"		σ–	-25	-45	μ.
lil	"L" input current	RESET	VI = VSS				-5.0	μA
lil	"L" input current	XIN	VI = VSS			-4.0		μ.

ELECTRICAL CHARACTERISTICS (Vcc = 4.0 to 5.5 V, Ta = -20 to 85°C, unless otherwise noted. Extended operating temperature version : Vcc = 3.0 to 5.5 V. Ta = -40 to -20°C and Vcc = 2.5 to 5.5 V. Ta = -20 to 85°C)

Note 1: When "1" is set to port Xc switch bit (bit 4 of address 003B16) of CPU mode register, the drive ability of port P70 is different from the value above mentioned.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Symbol	Parameter	Test condition		Limits									
Symbol	Farameter	Test condition	Min.	Тур.	Max.	Un							
Vram	RAM hold voltage	When clock is stopped	2.0		5.5	V							
		 High-speed mode, Vcc 	= 5 V										
		f(XIN) = 8 MHz											
		f(XCIN) = 32.768 kHz		6.4	13	m							
		Output transistors "off"											
		A-D converter in opera	ting										
		 High-speed mode, Vcc 	= 5 V										
		f(XIN) = 8 MHz (in WIT	state)										
		f(X ⁱ	f(XCIN) = 32.768 kHz		1.6	3.2	m						
		Output transistors "off"											
		A-D converter stopped											
		 Low-speed mode, Vcc = 	5 V, Ta ≤ 55°C										
		f(XIN) = stopped		25	36	μ							
		f(XCIN) = 32.768 kHz		20	20	25	25	20	20	20		۳	
		Output transistors "off"											
Icc	Power source current	 Low-speed mode, Vcc = 	5 V, Ta = 25°C										
		f(XIN) = stopped		7.0	14.0	14.0	μ						
		f(XCIN) = 32.768 kHz (i		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		.
		Output transistors "off"											
		• Low-speed mode, Vcc =	3 V, Ta ≤ 55°C										
		f(XIN) = stopped		15	22	μ							
		f(XCIN) = 32.768 kHz				.							
		Output transistors "off"											
		• Low-speed mode, Vcc =	3 V, Ia = 25°C										
		f(XIN) = stopped		4.5	9.0	μ							
		f(XCIN) = 32.768 kHz (i	<i>`</i>										
		Output transistors "off"											
		All oscillation stopped	Ta = 25 °C	0.1	1.0								
		(in STP state) Output transistors "off"	Ta = 85 °C		10	-μ							

ELECTRICAL CHARACTERISTICS (Vcc = 2.5 to 5.5 V, Ta = -20 to 85°C, unless otherwise noted. Extended operating temperature version : Vcc = 3.0 to 5.5 V, Ta = -40 to -20°C and Vcc = 2.5 to 5.5 V, Ta = -20 to 85°C)

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

A-D CONVERTER CHARACTERISTICS

 $(Vcc = 4.0 \text{ to } 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{Ta} = -20 \text{ to } 85^{\circ}\text{C}, 4 \text{ MHz} \le f(\text{XIN}) \le 8 \text{ MHz}, \text{ middle-/high-speed mode, unless otherwise noted. Extended operating temperature version : Vcc = 3.0 \text{ to } 5.5 \text{ V}, \text{Ta} = -40 \text{ to } -20^{\circ}\text{C} \text{ and Vcc} = 2.5 \text{ to } 5.5 \text{ V}, \text{Ta} = -20 \text{ to } 85^{\circ}\text{C})$

Symbol	Parameter	Test conditions		- Unit		
Symbol	Falameter	lest conditions	Min.	Тур.	Max.	
-	Resolution				8	Bits
-	Absolute accuracy (excluding quantization error)	VCC = VREF = 5 V			±2	LSB
tCONV	Conversion time	f(XIN) = 8 MHz		12.5 (Note)		μs
RLADDER	Ladder resistor		12	35	100	kΩ
Vref	Reference input current	VREF = 5 V	50	150	200	μA
lia	Analog port input current				5.0	μA

Note : When an internal trigger is used in middle-speed mode, it is 14 $\mu s.$

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Symbol	Parameter		Limits		
Symbol		Min.	Тур.	Max.	- Unit
tw(RESET)	Reset input "L" pulse width	2			μs
tc(XIN)	Main clock input cycle time (XIN input)	125			ns
twH(XIN)	Main clock input "H" pulse width	45			ns
twL(XIN)	Main clock input "L" pulse width	40			ns
tc(CNTR)	CNTR0, CNTR1 input cycle time	200			ns
twH(CNTR)	CNTR0, CNTR1 input "H" pulse width	80			ns
twL(CNTR)	CNTR0, CNTR1 input "L" pulse width	80			ns
twH(INT)	INTo to INT3 input "H" pulse width	80			ns
twL(INT)	INTo to INT3 input "L" pulse width	80			ns
tc(Sclk)	Serial I/O clock input cycle time (Note)	800			ns
twH(Sclк)	Serial I/O clock input "H" pulse width (Note)	370			ns
twL(Sclk)	Serial I/O clock input "L" pulse width (Note)	370			ns
tsu(RxD-ScLK)	Serial I/O input set up time	220			ns
th(Sc⊥κ–RxD)	Serial I/O input hold time	100			ns

TIMING REQUIREMENTS 1 (Vcc = 4.0 to 5.5 V, Vss = 0 V, Ta = -20 to 85°C, unless otherwise noted. Extended operating temperature version : Vcc = 3.0 to 5.5 V, Ta = -40 to -20°C and Vcc = 2.5 to 5.5 V, Ta = -20 to 85°C)

Note : When f(XIN) = 8 MHz and bit 6 of address 001A16 is "1" (clock synchronous).

Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is "0" (UART).

TIMING REQUIREMENTS 2(Vcc = 2.5 to 4.0 V, Vss = 0 V, Ta = -20 to 85°C, unless otherwise noted.

Extended operating temperature version : Vcc = 3.0 to 5.5 V, Ta = -40 to $-20^{\circ}C$ and Vcc = 2.5 to 5.5 V, Ta = -20 to $85^{\circ}C$)

C: und had	Deventer	Limits			Linit
Symbol	Parameter	Min.	Тур.	Max.	Unit
tw(RESET)	Reset input "L" pulse width	2			μs
tc(XIN)	Main clock input cycle time (XIN input)	125			ns
twH(Xın)	Main clock input "H" pulse width	45			ns
twL(XIN)	Main clock input "L" pulse width	40			ns
tc(CNTR)	CNTR0, CNTR1 input cycle time	500			ns
twH(CNTR)	CNTR ₀ , CNTR ₁ input "H" pulse width	230			ns
twL(CNTR)	CNTR ₀ , CNTR ₁ input "L" pulse width	230			ns
twH(INT)	INTo to INTs input "H" pulse width	230			ns
twL(INT)	INTo to INTs input "L" pulse width	230			ns
tc(Sc∟ĸ)	Serial I/O clock input cycle time (Note)	2000			ns
twH(Sc∟ĸ)	Serial I/O clock input "H" pulse width (Note)	950			ns
twL(Sclк)	Serial I/O clock input "L" pulse width (Note)	950			ns
tsu(RxD–Sclк)	Serial I/O input set up time	400			ns
th(Sc∟κ–RxD)	Serial I/O input hold time	200			ns

Note : When f(XIN) = 2 MHz and bit 6 of address 001A16 is "1" (clock synchronous).

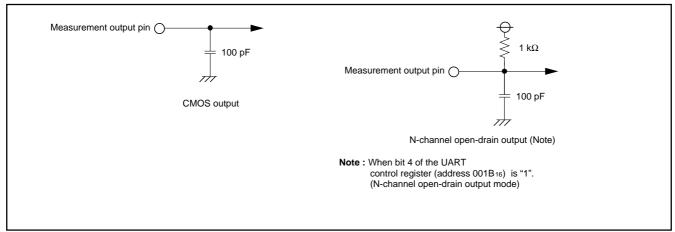
Divide this value by four when f(XIN) = 2 MHz and bit 6 of address 001A16 is "0" (UART).

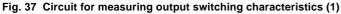
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

SWITCHING CHARACTERISTICS 1 (Vcc = 4.0 to 5.5 V, Vss = 0 V, Ta = -20 to 85°C, unless otherwise noted. Extended operating temperature version : Vcc = 3.0 to 5.5 V. Ta = -40 to -20°C and Vcc = 2.5 to 5.5 V. Ta = -20 to 85°C)

Symbol	Parameter -		Limits			
		Min.	Тур.	Max.	- Unit	
twH(Sc∟ĸ)	Serial I/O clock output "H" pulse width	tc(Sclк)/2-30			ns	
twL(Sclk)	Serial I/O clock output "L" pulse width	tc(Sclк)/2-30			ns	
td(Sclk-TxD)	Serial I/O output delay time (Note 1)			140	ns	
tv(Sclk-TxD)	Serial I/O output valid time (Note 1)	-30			ns	
tr(Sc∟ĸ)	Serial I/O clock output rising time			30	ns	
tf(Sc∟ĸ)	Serial I/O clock output falling time			30	ns	
tr(CMOS)	CMOS output rising time (Note 2)		10	30	ns	
tf(CMOS)	CMOS output falling time (Note 2)		10	30	ns	

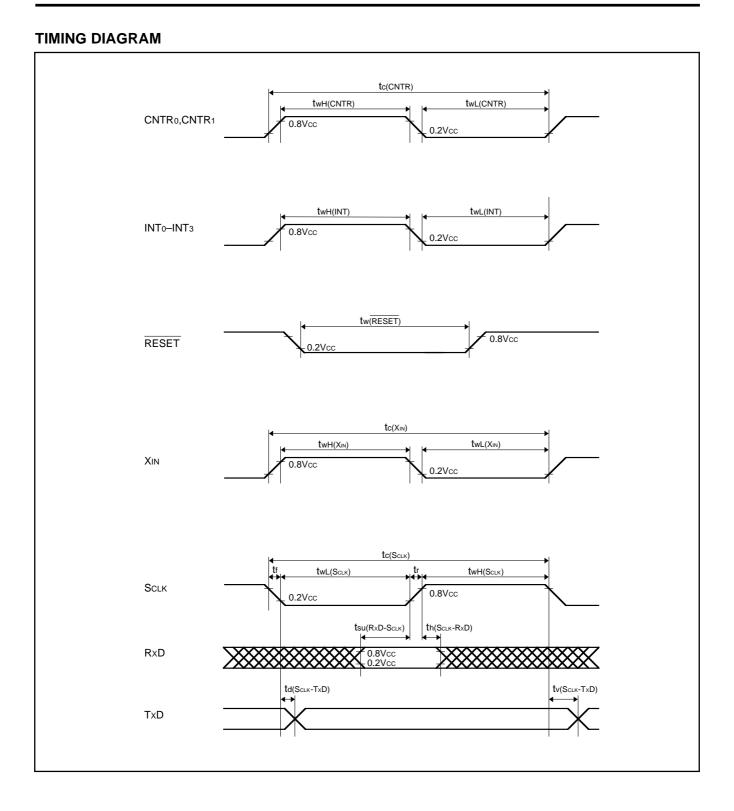
Notes 1 : When the P45/TxD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is "0".


2: XOUT and XCOUT pins are excluded.


SWITCHING CHARACTERISTICS 2 (Vcc = 2.5 to 4.0 V, Vss = 0 V, Ta = -20 to 85°C, unless otherwise noted. Extended operating temperature version : Vcc = 3.0 to 5.5 V, Ta = -40 to -20°C and Vcc = 2.5 to 5.5 V, Ta = -20 to 85°C)

Symbol	Parameter		Unit		
Symbol	Falalleter	Min.	Тур.	Max.	
twH(ScLк)	Serial I/O clock output "H" pulse width	tc(Sclк)/2-50			ns
twL(Sclк)	Serial I/O clock output "L" pulse width	tc(Sclк)/2-50			ns
td(Sc∟κ–TxD)	Serial I/O output delay time (Note 1)			350	ns
tv(Sclк–TxD)	Serial I/O output valid time (Note 1)	-30			ns
tr(Scьк)	Serial I/O clock output rising time			50	ns
tf(Sclк)	Serial I/O clock output falling time			50	ns
tr(CMOS)	CMOS output rising time (Note 2)		20	50	ns
tf(CMOS)	CMOS output falling time (Note 2)		20	50	ns

Notes 1 : When the P45/TxD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is "0".


2 : XOUT and XCOUT pins are excluded.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Keep safety first in your circuit designs!

Misubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party. Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials. All information contained in these materials, and are subject to change by Mitsubishi .

- The information contained in these materials, including product data, diagrams and charts, here are ecommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. Mitsubishi Electric Corporation withouch are to be product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the commended that customers and devicent and the semiconductor are and the semiconductor in the product semiconductor in the product semiconductor products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the commended that customers and devicent and the semiconductor and the semiconductor in the product semiconductor and the semiconductor in the product semiconductor and the semiconductor and

- approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

REVISION DESCRIPTION LIST

3822 GROUP DATA SHEET

Rev.	Revision Description	Rev.
No.		date
1.0	First Edition	980120