

/*
**
* File Name: w25p010a.v
* Product: W25P010A
* Features: 32k x 32 burst pipelined SRAM
* access time: 6ns
* pipelined data output capability
* 2T/2T mode Signal cycle desllected mode
* Intel burst mode & linear burst mode selection (LBO)
*
* Date : December 21, 1997
* Written by Lin, Hung-Hsueh
* Email Address : hhlin@winbond.com.tw
*
* Verilog model for 32kx32 Burst Pipelined SRAM
* (Tested on Verilog-XL 2.2.27)
*
*
* Memory Product Dept.(M200)
* Winbond Electronics Crop.
*
* Copyright (c) 1997 Winbond Electronics Corp.
* All right reserved
*
* --
* Version 1.1 January 14 , 1998
* (addr_reg_out type)
**
*/

`timescale 1ns/100ps
module pbsram (addr, io, clk, ce_1, ce2, ce_3, gw, bwe, bw1, bw2, bw3, bw4, oe, adv,
adsc, adsp, zz, ft, lbo);

parameter maxDepth = 32768; //32k
parameter maxAddr = 15; //Address
parameter maxOut = 32; //IO
parameter maxbyte = 4;

查询W25P010A供应商 捷多邦，专业PCB打样工厂，24小时加急出货

http://www.dzsc.com/ic/sell_search.html?keyword=W25P010A
http://www.jdbpcb.com/J/
http://pdf.dzsc.com/

parameter reg_delay = 0.3;

inout [maxOut-1:0] io;
input [maxAddr-1:0] addr;

input clk, ce_1, ce2, ce_3;
input adv, adsc, adsp;
input gw, bwe, bw1, bw2, bw3, bw4, oe;
input zz , ft, lbo;

reg enable, deselect, pipe_enable;
reg wr_reg_out1, wr_reg_out2,wr_reg_out3,wr_reg_out4;

reg [1:0] count;
reg [maxAddr-1:0] addr_reg_in;
reg [maxOut-1 :0] dout, data_out;
reg [maxOut-1:0] din;
reg [(maxOut/4-1):0] array_quad1 [0:maxDepth];
reg [(maxOut/4-1):0] array_quad2 [0:maxDepth];
reg [(maxOut/4-1):0] array_quad3 [0:maxDepth];
reg [(maxOut/4-1):0] array_quad4 [0:maxDepth];

wire en_int = (~ce_1 & ce2 & ~ce_3);
wire ce_adsp = (~adsp & ~ce_1);
wire load = (ce_adsp | ~adsc) ;
wire addbit1, addbit0;
wire [maxAddr-1:0] addr_reg_out;

wire bw_en1 = (bw1 | bwe) & gw;
wire bw_en2 = (bw2 | bwe) & gw;
wire bw_en3 = (bw3 | bwe) & gw;
wire bw_en4 = (bw4 | bwe) & gw;
wire wr_reg_or = wr_reg_out1 | wr_reg_out2 | wr_reg_out3 | wr_reg_out4;
wire oe_en;
wire [maxOut-1:0] io;
wire [maxOut-1:0] io_int;

integer i;

initial
begin
 enable =0;
 deselect = 0;
 $timeformat(-9,1,"ns",10);
 for (i=0; i<=maxDepth; i=i+1)
 begin
 array_quad1[i] =8'b0;
 array_quad2[i] =8'b0;
 array_quad3[i] =8'b0;
 array_quad4[i] =8'b0;
 end
end

// address register
always @(posedge clk)
begin
 if (load)
 addr_reg_in <= #0.2 addr;
end

// burst counter
always @(posedge clk)
begin
 if (~lbo & load)
 count <= 2'b00;
 else
 if (lbo & load)
 count <= addr [1:0];
 else
 if (~adv & ~load)
 count = count + 1;
end

assign addbit1 = lbo ? count[1] : (count[1]^addr_reg_in[1]) ;
assign addbit0 = lbo ? count[0] : (count[0]^addr_reg_in[0]) ;

assign addr_reg_out = {addr_reg_in[maxAddr-1:2], addbit1, addbit0};

// write register
always @(posedge clk)
begin
 wr_reg_out1 <= #0.2 ~(ce_adsp || bw_en1);
 wr_reg_out2 <= #0.2 ~(ce_adsp || bw_en2);
 wr_reg_out3 <= #0.2 ~(ce_adsp || bw_en3);
 wr_reg_out4 <= #0.2 ~(ce_adsp || bw_en4);
end

// enable register
always @(posedge clk)
begin
 if (load)
 begin
 enable = #0.2 en_int;
 deselect = #0.2 (~adsc & ce_1);
 end
end

// pipelined enable
always @(posedge clk)
begin
 pipe_enable <= #0.2 enable;
end

// memory array
always @(posedge clk)
begin
 if (en_int & ~adsc & adsp)
 begin
 #1.0
 if (~bw_en1) array_quad1[addr] <= din[7:0];
 if (~bw_en2) array_quad2[addr] <= din[15:8];
 if (~bw_en3) array_quad3[addr] <= din[23:16];
 if (~bw_en4) array_quad4[addr] <= din[31:24];
 end

 else if (enable & (adsc & (adsp | ce_1)))
 begin
 #1.0;
 if (~bw_en1) array_quad1[addr_reg_out] <= din[7:0];
 if (~bw_en2) array_quad2[addr_reg_out] <= din[15:8];
 if (~bw_en3) array_quad3[addr_reg_out] <= din[23:16];
 if (~bw_en4) array_quad4[addr_reg_out] <= din[31:24];
 end

end

// input register
always @(posedge clk)
begin
 din <= #0.3 io;
end

// output register
always @(posedge clk)
begin
 #0.2;
 #0.2;
 if (~wr_reg_or)
 begin
 dout[7 : 0] <= #0.2 array_quad1 [addr_reg_out];
 dout[15: 8] <= #0.2 array_quad2 [addr_reg_out];
 dout[23:16] <= #0.2 array_quad3 [addr_reg_out];
 dout[31:24] <= #0.2 array_quad4 [addr_reg_out];
 end

end

always @(posedge clk)
begin
 #0.2;
 if (wr_reg_or)
 data_out <= din ;
 else if (~wr_reg_or)

 data_out <= dout ;
end

assign io_int = oe_en ? data_out : din ;

assign oe_en = (~oe & pipe_enable & ~deselect & ~wr_reg_or);

//output driver
bufif1 #0.2 (io[0], io_int[0], oe_en);
bufif1 #0.2 (io[1], io_int[1], oe_en);
bufif1 #0.2 (io[2], io_int[2], oe_en);
bufif1 #0.2 (io[3], io_int[3], oe_en);
bufif1 #0.2 (io[4], io_int[4], oe_en);
bufif1 #0.2 (io[5], io_int[5], oe_en);
bufif1 #0.2 (io[6], io_int[6], oe_en);
bufif1 #0.2 (io[7], io_int[7], oe_en);
bufif1 #0.2 (io[8], io_int[8], oe_en);
bufif1 #0.2 (io[9], io_int[9], oe_en);
bufif1 #0.2 (io[10], io_int[10], oe_en);
bufif1 #0.2 (io[11], io_int[11], oe_en);
bufif1 #0.2 (io[12], io_int[12], oe_en);
bufif1 #0.2 (io[13], io_int[13], oe_en);
bufif1 #0.2 (io[14], io_int[14], oe_en);
bufif1 #0.2 (io[15], io_int[15], oe_en);
bufif1 #0.2 (io[16], io_int[16], oe_en);
bufif1 #0.2 (io[17], io_int[17], oe_en);
bufif1 #0.2 (io[18], io_int[18], oe_en);
bufif1 #0.2 (io[19], io_int[19], oe_en);
bufif1 #0.2 (io[20], io_int[20], oe_en);
bufif1 #0.2 (io[21], io_int[21], oe_en);
bufif1 #0.2 (io[22], io_int[22], oe_en);
bufif1 #0.2 (io[23], io_int[23], oe_en);
bufif1 #0.2 (io[24], io_int[24], oe_en);
bufif1 #0.2 (io[25], io_int[25], oe_en);
bufif1 #0.2 (io[26], io_int[26], oe_en);
bufif1 #0.2 (io[27], io_int[27], oe_en);
bufif1 #0.2 (io[28], io_int[28], oe_en);
bufif1 #0.2 (io[29], io_int[29], oe_en);

bufif1 #0.2 (io[30], io_int[30], oe_en);
bufif1 #0.2 (io[31], io_int[31], oe_en);

specify
 specparam tCYC=13.3, //Clock Cycle time
 tKH=5, //Colok High Pulse Width
 tKL=5, //Colok Low Pulse Width
 tKQ=6, //Clock to Output Valid
 tKX=2, //Clock to Output Invalid
 tKHZ=7, //Clock to Output High-Z
 tKLZ=0, //Clock to Output Low-Z
 tOE=6, //Output Enable to Output Valid
 tOHZ=6, //Output Enable to High-Z
 tOLZ=0, //Output Enable to Low-Z
 tAS=2.5, //Add. Setup Time
 tADSS=2.5, //ADSP_, ADSC_, ADV_ Setup Time
 tCES=2.5, //CE_1_, CE2, CE_3_ Setup Time
 tWS=2.5, //GW_, BWE_ BWx_ Setup Time
 tDS=2.5, //Write Data Setup Time
 tAH=0.5, //Add. Hold Time
 tADSH=0.5, //ADSP_, ADSC_, ADV_ Hold Time
 tCEH=0.5, //CE_1_, CE2, CE_3_ Hold Time
 tWH=0.5, //GW_, BWE_ BWx_ Hold Time
 tDH=0.5; //Write Data Hold Time

 (oe *>io) =(tOE,tOE,tOHZ);
 (clk *>io) =(tKQ,tKQ,tKHZ);

 $width (posedge clk, tKH);
 $width (negedge clk, tKL);
 $period (posedge clk, tCYC);
 $period (negedge clk, tCYC);
 $setuphold(posedge clk, adsc, tADSS, tADSH);
 $setuphold(posedge clk, adsp, tADSS, tADSH);
 $setuphold(posedge clk, adv, tADSS, tADSH);
 $setuphold(posedge clk, bw1, tWS, tWH);
 $setuphold(posedge clk, bw2, tWS, tWH);
 $setuphold(posedge clk, bw3, tWS, tWH);

 $setuphold(posedge clk, bw4, tWS, tWH);
 $setuphold(posedge clk, gw, tWS, tWH);
 $setuphold(posedge clk, bwe, tWS, tWH);
 $setuphold(posedge clk, ce_1, tCES, tCEH);
 $setuphold(posedge clk, ce2, tCES, tCEH);
 $setuphold(posedge clk, ce_3, tCES, tCEH);
 $setuphold(posedge clk, addr, tAS, tAH);
endspecify

endmodule

