@)
@)

@)
@

)
~— 0

Lo
=

4 %

o

0 0 W25P010A0 [0 O goobgoopcBOOO0O0OO02a000000

/*

sk sk sk sk sk sfe st sk s ske sk sfe ste sk sk sk sk sk st sk sk sk sk st sk sk sk ske sk ste sk st sk ske sk steoskeosieoskeoske s skeoskoskesk sk
* File Name: w25p010a.v

* Product: W25P010A

* Features: 32k x 32 burst pipelined SRAM

* access time: 6ns

* pipelined data output capability

* 2T/2T mode Signal cycle desllected mode

* Intel burst mode & linear burst mode selection (LBO)

* Date : December 21, 1997
5 Written by Lin, Hung-Hsueh
- Email Address : hhlin@winbond.com.tw

* Verilog model for 32kx32 Burst Pipelined SRAM
* (Tested on Verilog-XL 2.2.27)

* Memory Product Dept.(M200)

* Winbond Electronics Crop.

* Copyright (¢) 1997 Winbond Electronics Corp.
* All right reserved

* Version 1.1 January 14 , 1998
* (addr _reg out type)

sk sk s s s sk sk sk sk s s s sk sk sk sk sfeosie sk sk sk sk sk sk sk sk sk st s ke sk skeosk sk skokeosk skok skok

e

‘timescale 1ns/100ps
module pbsram (addr, 10, clk, ce 1, ce2, ce 3, gw, bwe, bwl, bw2, bw3, bw4, oe, adv,
adsc, adsp, zz, ft, 1bo);

parameter maxDepth = 32768; //32k
parameter maxAddr = 15; //Address
parameter maxQOut = 32; /1O

parameter maxbyte = 4;

http://www.dzsc.com/ic/sell_search.html?keyword=W25P010A
http://www.jdbpcb.com/J/
http://pdf.dzsc.com/

parameter reg_delay = 0.3;

inout [maxOut-1:0] io;
input [maxAddr-1:0] addr;

input clk, ce 1, ce2, ce 3;

input adv, adsc, adsp;

input gw, bwe, bwl, bw2, bw3, bw4, oe;
input zz , ft, Ibo;

reg enable, deselect, pipe_enable;

reg wr_reg outl, wr reg out2,wr reg out3,wr reg out4;

reg [1:0] count;

reg [maxAddr-1:0] addr reg in;
reg [maxOut-1 :0] dout, data out;
reg [maxOut-1:0] din;

3

reg [(maxOut/4-1):0] array quad]l [0:maxDepth

b

reg [(maxOut/4-1):0] array quad2 [0:maxDepth

3

reg [(maxOut/4-1):0] array quad3 [0:maxDepth

b

—

|
|
]
reg [(maxOut/4-1):0] array quad4 [0:maxDepth]
wire en_int = (~ce 1 & ce2 & ~ce 3);
wire ce_adsp = (~adsp & ~ce_1);
wire load = (ce_adsp | ~adsc) ;

wire addbitl, addbit0;

wire [maxAddr-1:0] addr_reg_out;

wire bw_enl = (bwl | bwe) & gw;
wire bw_en2 = (bw2 | bwe) & gw;
wire bw_en3 = (bw3 | bwe) & gw;
wire bw_en4 = (bw4 | bwe) & gw;

wire wr_reg_or = wr_reg outl | wr_reg out2 | wr_reg out3 | wr reg out4

wire oe_en;
wire [maxQOut-1:0] io;

wire [maxOut-1:0] io_int;

2

integer i;

initial
begin
enable =0;
deselect = 0;
$timeformat(-9,1,"ns",10);
for (i=0; i<=maxDepth; i=i+1)
begin
array _quadl[i] =8'b0;
array _quad2[i] =8'b0;
array_quad3[i] =8'b0;
array _quad4[i] =8'b0;
end

end

// address register
always @(posedge clk)
begin
if (load)
addr reg in <=#0.2 addr;
end

// burst counter
always @(posedge clk)
begin
if (~Ibo & load)
count <= 2'b00;
else
if (Ibo & load)
count <= addr [1:0];
else
if (~adv & ~load)
count = count + 1;

end

assign addbitl =1bo ? count[1] : (count[1]*addr reg in[1]);
assign addbit0 = Ibo ? count[0] : (count[0]*addr reg in[0]);

assign addr reg out = {addr reg in[maxAddr-1:2], addbitl, addbit0};

// write register

always @(posedge clk)

begin
wr_reg outl <=#0.2 ~(ce_adsp || bw_enl);
wr_reg out2 <=#0.2 ~(ce_adsp || bw_en2);
wr_reg out3 <=#0.2 ~(ce_adsp || bw_en3);
wr_reg outd <=#0.2 ~(ce_adsp || bw_en4);

end

// enable register
always @(posedge clk)
begin
if (load)
begin
enable = #0.2 en _int;
deselect = #0.2 (~adsc & ce _1);
end

end

// pipelined enable
always @(posedge clk)
begin
pipe _enable <= #(.2 enable;

end

// memory array

always @(posedge clk)
begin
if (en_int & ~adsc & adsp)
begin
#1.0

if (~bw_enl) array quadl[addr] <= din[7:0];

if (~bw_en2) array quad2[addr] <= din[15:8];
if (~bw_en3) array quad3[addr] <= din[23:16];
if (~bw_en4) array quad4[addr] <= din[31:24];

end

else if (enable & (adsc & (adsp | ce 1)))
begin
#1.0;
if (~bw_enl) array quadl[addr reg out] <= din[7:0];
if (~bw_en2) array quad2[addr reg out] <= din[15:8];
if (~bw_en3) array quad3[addr reg out] <=din[23:16];
if (~bw_en4) array quad4[addr reg out] <=din[31:24];

end

end

// input register

always @(posedge clk)
begin

din<= #0.3 io;
end
// output register
always @(posedge clk)
begin

#0.2;

#0.2;

if (~wr_reg or)

begin
dout[7 : 0] <=#0.2 array _quadl [addr reg out];
dout[15: 8] <=#0.2 array_quad2 [addr reg out];
dout[23:16] <=#0.2 array _quad3 [addr reg out];
dout[31:24] <=#0.2 array quad4 [addr reg out];

end

end

always @(posedge clk)
begin
#0.2;
if (wr_reg_or)
data out <=din ;

else if (~wr_reg_or)

data out <= dout ;

end

assignio int= oe en ? data out : din ;

assign oe_en = (~oe & pipe _enable & ~deselect & ~wr reg or);

//output driver

bufifl #0.2 (i0[0], i0_int[0], oe en);
bufifl #0.2 (io[1], i0_int[1], oe en);
bufifl #0.2 (io[2], i0_int[2], oe_en);
bufifl #0.2 (io[3], i0_int[3], oe _en);
bufifl #0.2 (io[4], i0_int[4], oe _en);
bufifl #0.2 (io[5], i0_int[5], oe_en);
bufifl #0.2 (i0[6], i0_int[6], oe _en);
bufifl #0.2 (io[7], i0_int[7], oe_en);
bufifl #0.2 (i0[8], i0_int[8], oe _en);
bufifl #0.2 (i0[9], i0_int[9], oe_en);
bufifl #0.2 (i0[10], i0_int[10], oe_en);
bufifl #0.2 (io[11], i0_int[11], oe_en);
bufifl #0.2 (io[12], i0_int[12], oe_en);
bufifl #0.2 (io[13], i0_int[13], oe_en);
bufifl #0.2 (io[14], i0_int[14], oe_en);
bufifl #0.2 (io[15], i0_int[15], oe_en);
bufifl #0.2 (i0[16], i0_int[16], oe_en);
bufifl #0.2 (io[17], i0_int[17], oe_en);
bufifl #0.2 (i0[18], i0_int[18], oe_en);
bufifl #0.2 (i0[19], i0_int[19], oe_en);
bufifl #0.2 (i0[20], i0_int[20], oe_en);
bufifl #0.2 (io[21], i0_int[21], oe_en);
bufifl #0.2 (i0[22], i0_int[22], oe_en);
bufifl #0.2 (i0[23], i0_int[23], oe_en);
bufifl #0.2 (i0[24], 10_int[24], oe_en);
bufifl #0.2 (i0[25], i0_int[25], oe_en);
bufifl #0.2 (i0[26], i0_int[26], oe_en);
bufifl #0.2 (i0[27], i0_int[27], oe_en);
bufifl #0.2 (i0[28], i0_int[28], oe_en);
bufifl #0.2 (i0[29], i0_int[29], oe_en);

bufifl #0.2 (i0[30], i0_int[30], oe_en);
bufifl #0.2 (io[31], i0_int[31], oe_en);

specify

specparam tCYC=13.3, //Clock Cycle time
tKH=5, //Colok High Pulse Width
tKL=5, //Colok Low Pulse Width
tKQ=6, //Clock to Output Valid
tKX=2, //Clock to Output Invalid
tKHZ=7, //Clock to Output High-Z
tKLZ=0, //Clock to Output Low-Z
tOE=6, //Output Enable to Output Valid
tOHZ=6, //Output Enable to High-Z
tOLZ=0, //Output Enable to Low-Z

tAS=2.5, //Add. Setup Time

tADSS=2.5, //ADSP_,ADSC , ADV _ Setup Time
tCES=2.5, //ICE 1 ,CE2,CE 3 Setup Time
tWS=2.5,//GW_, BWE_ BWx_Setup Time
tDS=2.5, //Write Data Setup Time

tAH=0.5, //Add. Hold Time

tADSH=0.5, //ADSP_, ADSC ,ADV_Hold Time
tCEH=0.5, //CE 1 ,CE2,CE 3 Hold Time
tWH=0.5, //GW_, BWE BWx_ Hold Time
tDH=0.5; //Write Data Hold Time

(oe *>10) =(tOE,tOE,tOHZ);
(clk *>i0) =(tKQ,tKQ,tKHZ);

$width (posedge clk, tKH);

$width (negedge clk, tKL);

$period (posedge clk, tCYC);

$period (negedge clk, tCYC);
$setuphold(posedge clk, adsc, tADSS, tADSH);
$setuphold(posedge clk, adsp, tADSS, tADSH);
$setuphold(posedge clk, adv, tADSS, tADSH);
$setuphold(posedge clk, bw1, tWS, tWH);
$setuphold(posedge clk, bw2, tWS, tWH);
$setuphold(posedge clk, bw3, tWS, tWH);

$setuphold(posedge clk, bw4, tWS, tWH);
$setuphold(posedge clk, gw, tWS, tWH);
$setuphold(posedge clk, bwe, tWS, tWH);
$setuphold(posedge clk, ce 1, tCES, tCEH);
$setuphold(posedge clk, ce2, tCES, tCEH);
$setuphold(posedge clk, ce 3, tCES, tCEH);
$setuphold(posedge clk, addr, tAS, tAH);
endspecify

endmodule

