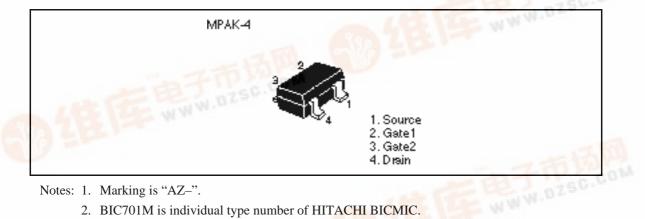
Bias Controlled Monolithic IC VHF/UHF RF Amplifier



ADE-208-703C (Z) 4th. Edition Nov. 1998

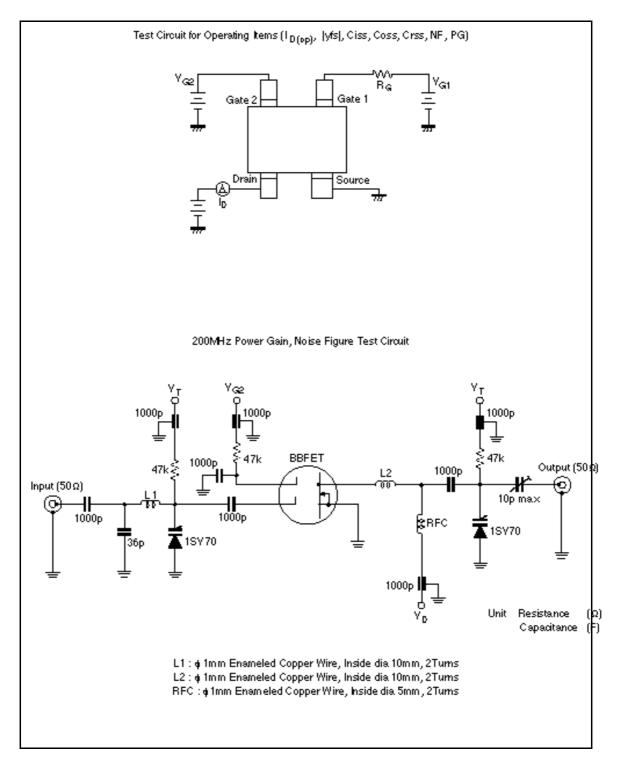
Features

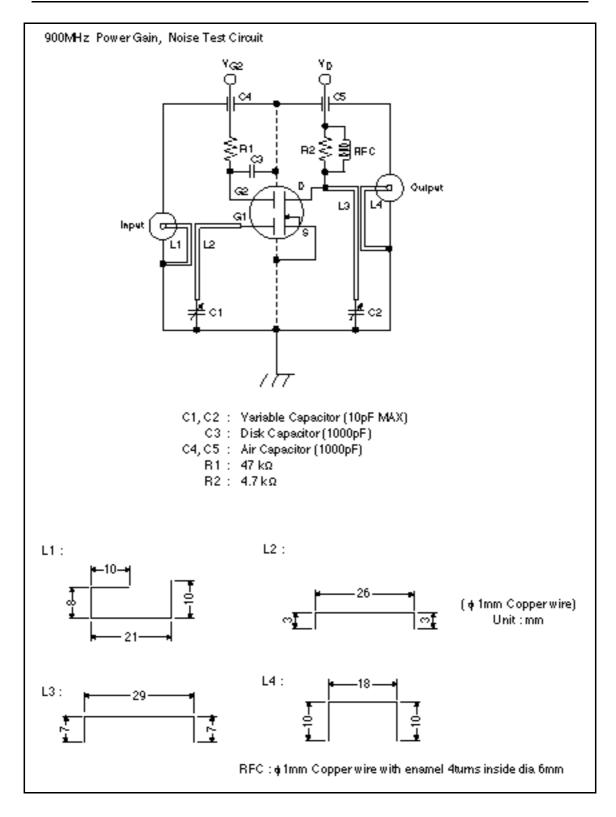
- Bias Controlled Monolithic IC (No external DC biasing voltage on gate1.); To reduce using parts cost & PC board space.
- High gain; PG = 27 dB typ. (at f = 200 MHz), PG = 21.5 dB typ. (at f = 900 MHz)
- Low noise;
 - NF = 1.1 dB typ. (at f = 200 MHz), NF = 1.75 dB typ. (at f = 900 MHz)
- Withstanding to ESD; Build in ESD absorbing diode. Withstand up to 200V at C=200pF, Rs=0 conditions.
- Provide mini mold packages; MPAK-4(SOT-143mod)

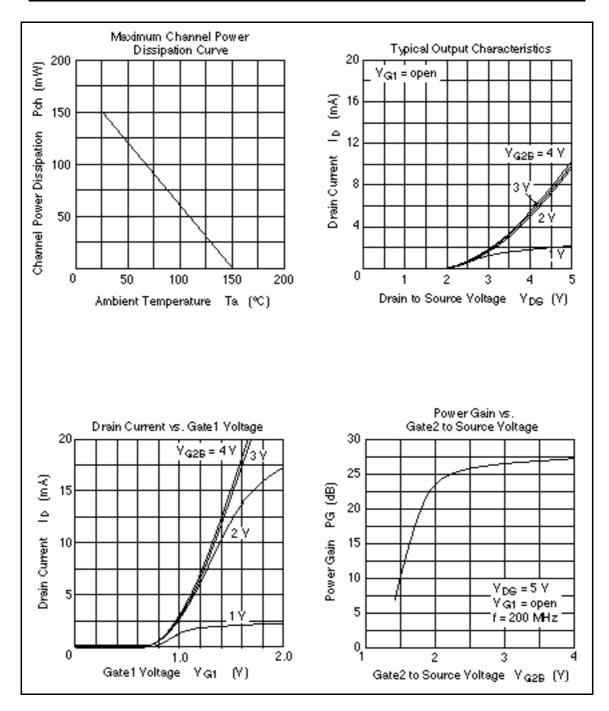
Outline

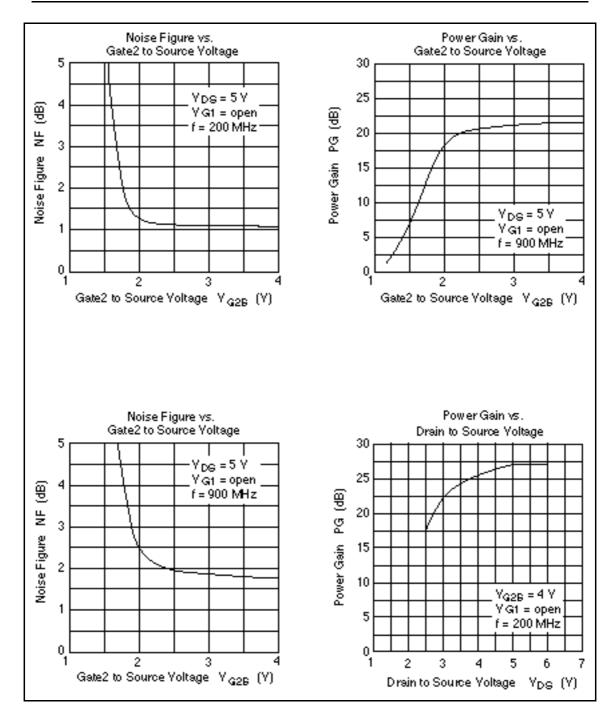
Notes: 1. Marking is "AZ-".

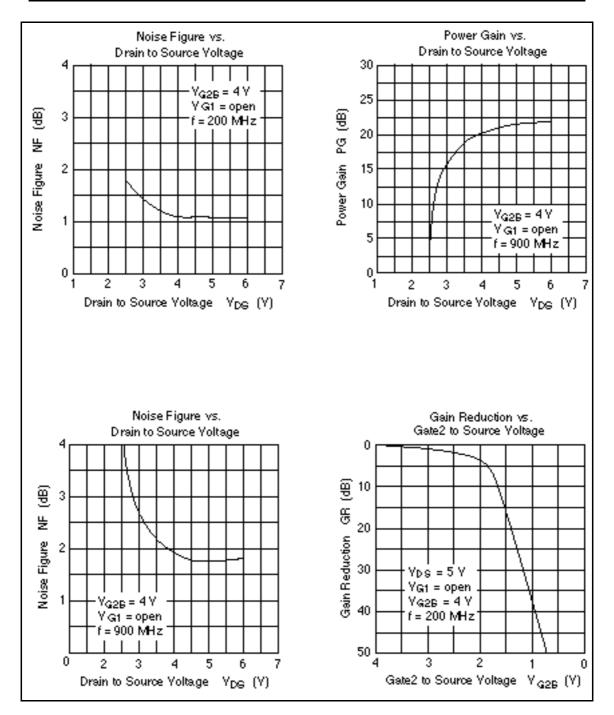
2. BIC701M is individual type number of HITACHI BICMIC.

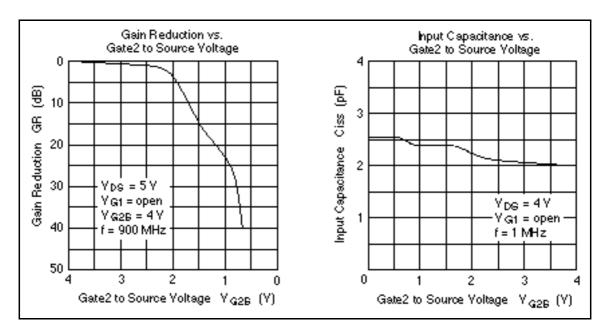

Absolute Maximum Ratings (Ta = 25° C)

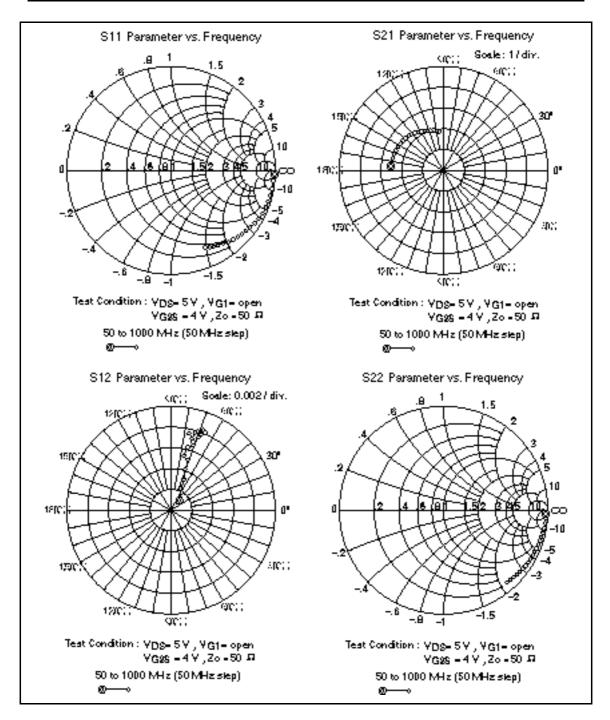

Item	Symbol		Unit	
Drain to source voltage	V _{DS}	6	V	
Gate1 to source voltage	V _{G1S}	+6 - 0	V	
Gate2 to source voltage	V _{G2S}	+6 - 0	V	
Drain current	I _D	20	mA	
Channel power dissipation	Pch	150	mW	
Channel temperature	Tch	150	°C	
Storage temperature	Tstg	–55 to +150	°C	

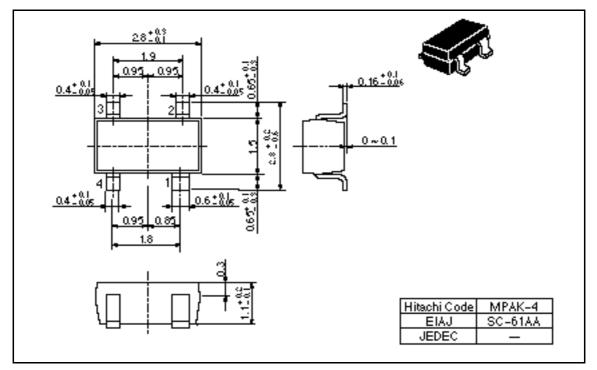

Electrical Characteristics (Ta = 25° C)


Item	Symbol	Min	Тур	Max	Unit	Test Conditions	
Drain to source breakdown voltage	$V_{(\text{BR})\text{DSS}}$	6		_	V	$I_{D} = 200 \mu A$ $V_{G2S} = 0, V_{G1} = open$	
Gate1 to source breakdown voltage	$V_{(\text{BR})\text{G1SS}}$	+6	_		V	$I_{G1} = +10\mu A$ $V_{G2S} = V_{DS} = 0$	
Gate2 to source breakdown voltage	$V_{(BR)G2SS}$	+6	—	—	V	$\begin{split} I_{\rm G2} &= +10 \mu A \\ V_{\rm G1S} &= V_{\rm DS} = 0 \end{split}$	
Gate1 to source cutoff current	I _{G1SS}	—	_	+100	nA	$V_{G1S} = +5V$ $V_{G2S} = V_{DS} = 0$	
Gate2 to source cutoff current	I _{G2SS}	_	_	+100	nA	$V_{G2S} = +5V$ $V_{G1S} = V_{DS} = 0$	
Gate2 to source cutoff voltage	$V_{\text{G2S(off)}}$	0.5	0.7	1.0	V	$V_{\text{DS}} = 5V, I_{\text{D}} = 100 \mu \text{A}$ $V_{\text{G1}} = \text{open}$	
Drain current	I DS(op)	7	10	13	mA	$V_{\text{DS}} = 5V$, $V_{\text{G2S}} = 4V$ $V_{\text{G1}} = \text{open}$	
Forward transfer admittance	y _{fs}	22	27	32	mS	$V_{DS} = 5V, I_D = 10mA$ $V_{G2S} = 4V, f = 1kHz$	
Input capacitance	C _{iss}	1.6	2.0	2.3	pF	$V_{\rm DS} = 5V, V_{\rm G2S} = 4V$	
Output capacitance	C _{oss}	0.6	1.0	1.4	pF	V _{G1} = open	
Reverse transfer capacitance	C _{rss}	_	0.024	0.05	рF	f = 1MHz	
Power gain	PG1	23	27	_	dB	$V_{DS} = 5V, V_{G2S} = 4V$	
						V _{G1} = open	
Noise figure	NF1	_	1.1	1.6	dB	f = 200MHz	
Power gain	PG2	17	21.5	_	dB	$V_{DS} = 5V, V_{G2S} = 4V$	
						V _{G1} = open	
Noise figure	NF2		1.75	2.3	dB	f = 900MHz	


Main Characteristics







	S11		S21		S12		S22	
f (MHz)	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
50	0.994	-3.1	2.54	175.5	0.00132	50.0	0.978	-2.4
100	0.993	-6.6	2.52	171.0	0.00201	59.8	0.981	-5.1
150	0.988	-10.5	2.51	166.4	0.00228	66.1	0.979	-7.5
200	0.983	-14.1	2.49	161.6	0.00323	66.7	0.979	-10.1
250	0.977	-17.9	2.46	157.2	0.00420	70.2	0.976	-12.7
300	0.970	-21.8	2.43	152.8	0.00514	71.9	0.974	-15.1
350	0.963	-25.4	2.40	148.6	0.00532	76.1	0.971	-17.6
400	0.951	-28.8	2.37	143.7	0.00629	74.2	0.969	-20.1
450	0.943	-32.4	2.34	139.4	0.00665	70.8	0.966	-22.4
500	0.933	-35.4	2.29	135.1	0.00700	71.6	0.962	-24.9
550	0.918	-39.1	2.25	131.1	0.00756	69.3	0.958	-27.3
600	0.906	-42.0	2.21	127.2	0.00790	68.1	0.954	-29.7
650	0.895	-45.5	2.17	123.0	0.00836	67.6	0.951	-32.2
700	0.882	-48.7	2.13	119.4	0.00820	66.1	0.946	-34.4
750	0.879	-51.1	2.09	115.6	0.00818	65.9	0.942	-36.8
800	0.860	-54.6	2.05	111.7	0.00819	66.5	0.938	-39.2
850	0.845	-58.3	2.02	107.8	0.00798	70.7	0.933	-41.5
900	0.835	-60.7	1.96	104.2	0.00787	71.9	0.929	-43.8
950	0.827	-63.3	1.92	100.5	0.00727	73.1	0.924	-46.2
1000	0.812	-66.4	1.88	97.0	0.00758	75.6	0.919	-48.5

Sparameter (V $_{DS}$ = V $_{G1}$ = 5V, V $_{G2S}$ = 4V, V $_{G1}$ = open, Zo = 50 $\,$)

Package Dimensions

Unit: mm

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

HITACHI

Hitachi, Ltd.

Semiconductor & IC Div. NipponBldb, 2-5-2, Othermachi, Chiyoda-ku, Tokyo 100.0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 UBL North-America : http:semiconductor.bitechi.com

NorthAmerica	: http:semiconductor.hitachi.com/
Europe	: http://www.hitachi-eu.com/hel/ecg
Asia (Singapore)	: http://www.has.hitachi.com_sq/grp3/sicdin.dex.htm
Asia (Taivan)	: http://www.hitachi.com.tw/E/Product/SICD_Frame.htm
Asia (HongKong)	: http://www.hitachi.com.hk/eng/bo/grp3/index.htm
Japani 🍈 🗍	: http://www.hitachi.co.jp/Sicdifndx.Ftm
· · · · · · · · · · · · · · · · · · ·	

For further information write to: His chi Semiconductor His chi Europe GmbH

Hischi Semiconductor (America) Inc. 2000 Siene Point Perlaney Briebang Ol. 94005 1807 Tel:c1s (800) 285-1801 Fex:c1s (806) 297-0447

Bedronic componente Group Domecher Streiße 3 D35522 Feldlärchen, Munich Germany Tel: c4db (30) 9 9180-0 Fex: c4db (30) 9 29 30 00 Hischi Europe Ltl. Bedronic Componente Group. Whitebrock Peek Lover Cookhem Roed Midenheed Berlahire SL 6311, United Kingdom Tel: c4db (1623) 535000 Fex: c4do (1623) 773222

Hischi Azir Pos Ltd. 15 Collyer Gany \$20-00 Hischi Tower Singapore 049318 Tel: 535-2100 Fex: 535-1533

HITACHI

Hinchi Asin Ltd. Taipei Brunch Office 35, Hung Kuo Buiking, Na 167, Tun-Hva North Road, Taipei (105) Tel: 08350 (2) 2718-3585 Fax: 08350 (2) 2718-3180

Hinschi Arin (Hong Kong) Ltd. Group III (Bectronic Componente) 7/F., North Tower, World Finence Centre, Herbour Oly, Onnine Roed, Teim She Teui, Kowloon, Hong Kong Teil: c3820 (2) 735 92 18 Fex: c3820 (2) 735 92 18 Teile: 408 15 HITECHX

Copyright @Hitschi, Ltd., 1998. All rights reserved. Printed in Japan.