SILICONIX INC查询2N7016供应商

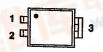
Siliconix

■ 8254735 捷密那5Te \$PC 2打 4 工厂

2N7016

T-39-17

P-Channel Enhancement Mode Transistor


PRODUCT SUMMARY

V _{(BR)DSS} (V)	rds(ON) (Ω)	l _D (A)
-60	1.0	-0.70

4-PIN DIP (Similar to TO-250)

TOP VIEW

GATE SOURCE DRAIN

ABSOLUTE MAXIMUM RATINGS $(T_A = 25^{\circ}C \text{ Unless Otherwise Noted})^1$

PARAMETERS/TEST CONDITIONS		SYMBOL	LIMITS	UNITS	
Drain-Source Voltage .		V _{DS}	60		
Gate-Source Voltage		V _{GS}	±20	┤ '	
Continuous Drain Current	T _A = 25°C	lD	0.70		
	T _A = 100°C	1	0.45		
Pulsed Drain Current ²		l _{DM}	10	- "	
Powe <mark>r Dissipation</mark>	T _A = 25°C	PD	1.0	w	
	T _A = 100°C		0.4		
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C	
Lead Temperature (1/16" from case for 10 sec.)		T _L	300	W	

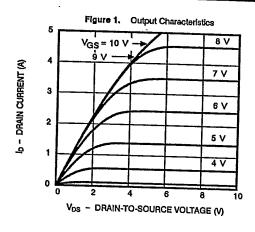
THERMAL RESISTANCE RATINGS

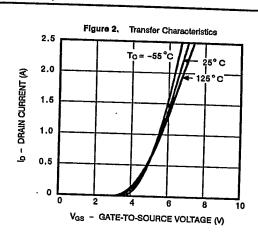
THERMAL RESISTANCE	SYMBOL	TYPICAL	MAXIMUM	UNITS	I
Junction-to-Ambient	R _{thJA}		120	K/W	

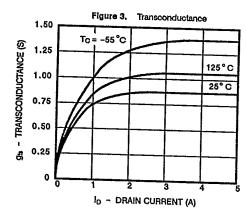
¹Negative signs for current and voltage ratings have been omitted for the sake of clarity, ²Pulse width limited by maximum junction temperature.

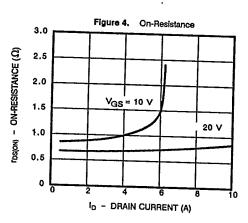
2N7016

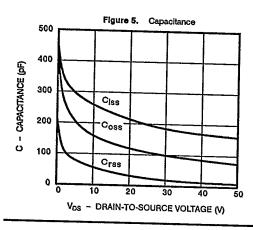
Siliconix incorporated

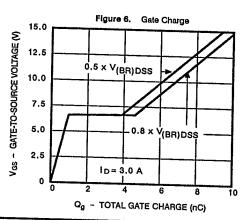

			-	LIM	IITS	UNIT
PARAMETER	SYMBOL	TEST CONDITIONS	TYP	MIN	· MAX	
STATIC						
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{QS} = 0 V, I _D = 250 μA		60		٧
Gate Threshold Voltage	V _{GS(th)}	V _{DS} = V _{QS} , I _D = 1000 μA		2.0	4.0	
Gate-Body Leakage	lass	V _{DS} = 0 V, V _{QS} = ±20 V			±100	nA
Zero Gate Voltage Drain Current	loss	V _{DS} = V _{(BR)DSS} , V _{GS} = 0 V			250	μА
		V _{DS} = 0.8 x V _{(88)DSS} , V _{GS} = 0 V, T _J = 125°C			1000	ļ
On-State Drain Current ¹	I _{D(ON)}	V _{OS} = 5 V, V _{QS} = 10 V		0.7		Α
Drain-Source On-State Resistance ¹	r _{DS(ON)}	$V_{GS} = 10 \text{ V, i}_{D} = 0.70 \text{ A}$	0.85		1.0	Ω
		V _{GS} = 10 V, I _D = 0.70 A, T _J = 125°C	1.6		1.9	<u> </u>
Forward Transconductance ¹	Sts	V _{DS} = 15 V, I _D = 2 A	0.90	0.50		S
DYNAMIC						
Input Capacitance	Clss		200		290	
Output Capacitance	Coss	V _{GS} = 0 V, V _{DS} = 25 V, f = 1 MHz	110		160	pF
Reverse Transfer Capacitance	C _{rss}		25	<u> </u>	60	L
Total Gate Charge ²	Q _g		6.1	<u></u>	7.5	1
Gate-Source Charge ²	Q _{gs}	$V_{DS} = 0.8 \times V_{(BR)DSS}, V_{GS} = 10 \text{ V}, I_D = 0.7 \text{ A}$	8,0	L		nC
Gate-Drain Charge ²	O _{Od}		3.5		1	
Turn-On Delay Time ²	t _{d(on)}	<u> </u>	8		20	1
Rise Time ²	ţ	$V_{QO} = 40 \text{ V, R}_L = 40 \Omega$	9	j	20	กร
Turn-Off Delay Time ²	t _{d(off)}	$I_D \simeq$ 1 A, V_{GEN} = 10 V, R_G = 25 Ω	16		25	
Fall Time ²	ŧ		25		30	<u> </u>
SOURCE-DRAIN DIODE RATI	NGS AND C	HARACTERISTICS (T _A = 25°C)				
Continuous Current	Is				0.70	A
Pulsed Current ³	IsM				10	
Forward Voltage ¹	V _{SD}	I _F = I _S , V _{GS} = 0 V	1.3		1.8	٧
Reverse Recovery Time	t _{rr}	l _F = l _S , dl _F /dt = 100 A/μs	60			ns
Reverse Recovery Charge	Q _{rt}	1	0.15			μС

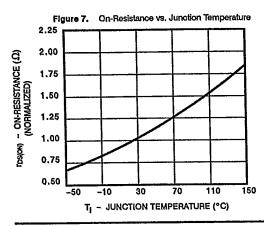

 $^{^1}$ Pulse test: Pulse Width $\leq 300~\mu sec$, Duty Cycle $\leq 2\%$. 2 Independent of operating temperature, 3 Pulse width limited by maximum junction temperature).

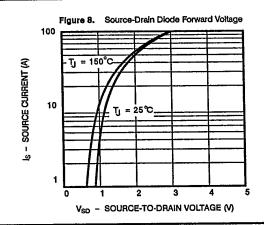

Siliconix incorporated


2N7016

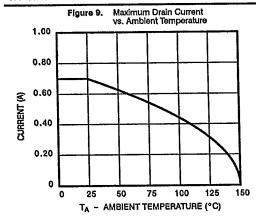

TYPICAL CHARACTERISTICS (25°C Unless Otherwise Specified)

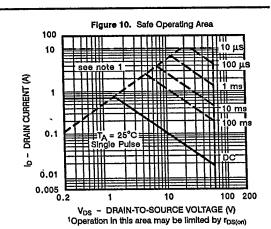






2N7016




TYPICAL CHARACTERISTICS (Cont'd)

THERMAL RATINGS

