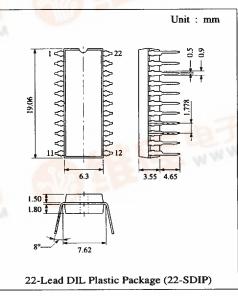
查询AN7338供应商

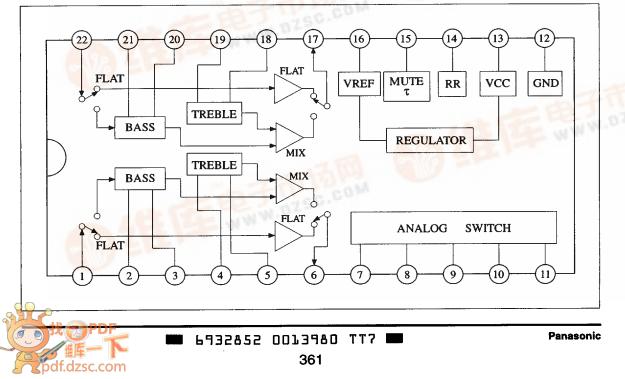
捷多邦,专业PCB打样工厂,24小时加**N7338K**


AN7338K

Preset IC For Portable Cassette Recorder

WWW.DZSC.

Description


The AN7338K is a monolithic IC developed for portable cassette recorder. It is placed in the stage between preamplifier and power amplifier and is operating as a preset graphic equaliser with 5 preset modes : Rock, Pops, Flat, Classic and Jazz. The boosting frequencies are 100Hz and 7kHz. There is a built-in LED indicator for every mode and FLAT will be the initial mode when power up.

Features

- Few external components.
- Selection modes : Rock, Pops, Flat, Classic and Jazz.
- Built-in switches can be controlled by microprocessor.
- Internal LED driver indicator for every mode.

AN7338K

Absolute Maximum Ratings (Ta=25°C)

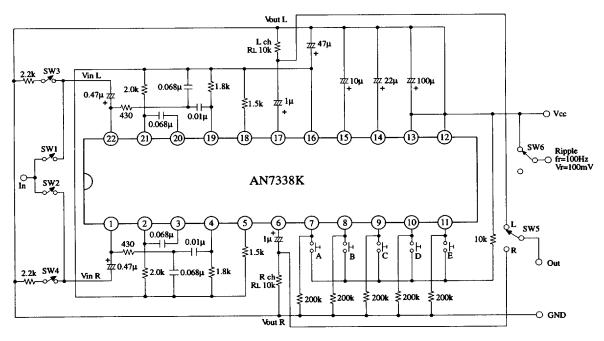
Item	Symbol	Rating	Unit	
Supply Voltage	V _{cc}	14	v	
Supply Current	Icc	50	mA	
Power Dissipation	PD	700	mW	
Operating Ambient Temperature	Topr	-25 ~ +75	°C	
Storage Temperature	Tstg	-55 ~ +150	°C	

Operating Supply Voltage Range: $V_{CC} = 3.6V \sim 12.0V$

■ Electrical Characteristics (V_{CC}=6V, f=1kHz, Flat mode*1:Switch E is ON, $Ta=25^{\circ}C$

Item	Item Symbol Condition		min.	typ.	max.	Unit
Quiescent Current	Icq1	No input		15.0	19.5	mA
Channel Balance	СВ	VinL = 0.1V, VinR = 0.1V		0	1	dB
Reference Voltage	Vref	No input	2.4	3.4	4.3	v
Ripple Rejection	RR	Vr= 0.1V, fr = 100Hz	35	40		dB
Channel Separation	CS	Vin=0.1V, Measure Vout	35	40		dB
Output Noise *2	Vno	$Vin = 0V, Rg = 2.2k\Omega$		10	20	μV
THD (1 kHz) *2	THD1	Vin = 0.1V		0.1	0.3	%
Gain (100 Hz)	Gvl	Vin = 0.1V	-2.0	-0.5	2.0	dB
Gain (7 kHz)	Gv2	Vin = 0.1V	-2.0	0.5	2.0	dB
Vo,max	Vom	THD = 1%, RL = $10k\Omega$	0.6	1.0	1.4	Vrms
Channel (Classic)		Switch A is ON				
Quiescent Current	Icq2	No input	11.5	16.0	20.5	mA
Gain (100 Hz)	Gv3	Vin = 0.1V	2	4	6	dB
Gain (7 kHz)	Gv4	Vin = 0.1V	2	4	6	dB
Channel (Rock)		Switch B is ON				
Quiescent Current	Icq3	No input	10.5	14.5	19.0	mA
Gain (100 Hz)	Gv5	Vin = 0.1V	6	8	10	dB
Gain (7 kHz)	Gv6	Vin = 0.1V	6	8	10	dB
Channel (Jazz)		Switch C is ON				
Quiescent Current	Icq4	No input	10.5	14.5	19.0	mA
Gain (100 Hz)	Gv7	Vin = 0.1V	6	8	10	dB
Gain (7 kHz)	Gv8	Vin = 0.1V	2	4	6	dB
Channel (Pops)		Switch D is ON				
Quiescent Current	Icq5	No input	10.5	14.5	19.5	mA
Gain (100 Hz)	Gv9	Vin = 0.1V	2	4	6	dB
Gain (7 kHz)	Gv10	Vin = 0.1V	6	8	10	dB

*1 Switch E, as shown in Test Circuit, is ON. *2 DIN AUDIO filter used.

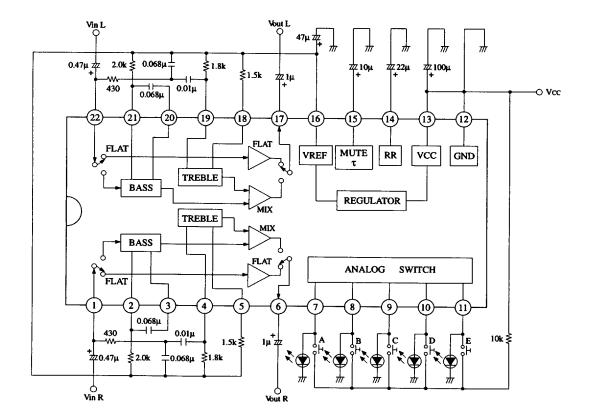

Panasonic

Electrical Characteristics (Continue) (VCC=6V, f=1kHz, Flat mode*1:Switch E is ON, Ta=25°C)

Item	Symbol	Condition	min.	typ.	max.	Unit
Channel (Classic)		Switch A is ON				
THD (1 kHz)*2	THD2	Vin = 0.1V		0.25	0.3	%
Channel (Rock)		Switch B is ON				
THD (1 kHz) *2	THD3	Vin = 0.1V		0.25	0.3	%
Channel (Jazz)		Switch C is ON				
THD (1 kHz) *2	THD4	Vin = 0.1V		0.25	0.3	%
Channel (Pops)		Switch D is ON				
THD (1 kHz)*2	THD5	Vin = 0.1V		0.25	0.3	%

*1 Switch E, as shown in Test Circuit, is ON. *2 DIN AUDIO filter used.

Test Circuit


Table 1

Mode	Switch	Pin No.
Classic	A	7
Rock	В	8
Jazz	С	9
Pops	D	10
Flat	E	11

* Individual mode can be activated by pressing the respective switch as shown in Table 1.

AN7338K

Application Circuit

Pin

Pin No	Pin Name	Pin No	Pin Name
1	R-Ch Input	12	GND
2	R-Ch Negative Feedback 1	13	Vcc
3	R-Ch Bass	14	Ripple Rejection
4	R-Ch Treble	15	Mute τ
5	R-Ch Negative Feedback 2	16	Reference Voltage
6	R-Ch Output	17	L-Ch output
7	Classic	18	L-Ch Negative Feedback 2
8	Rock	19	L-Ch Treble
9	Jazz	20	L-Ch Bass
10	Pops	21	L-Ch Negative Feedback 1
11	Flat	22	L-Ch Input

Panasonic	
-----------	--

6932852 0013983 706 📰

364

Pin Descriptions

Pin No.	Pin Name	DC Bias Voltage	Equivalent Circuit	Description
1, 22	Bass Input for CH 1 & CH 2	3.40	Vref Vcc	These are the inputs to the IC. These inputs can be from PRE or VOL. block, through a 0.47μ F cap. I/P impedance ≈ 5.8 k Ω
4, 19	Treble Input for CH 1 & CH 2	3.40	$\begin{array}{c} 0.47\mu \\ Vin \bigcirc + \\ 22 \\ \hline \\ 22 \\ \hline \\ 22 \\ \hline \\ 430 \\ 0.01\mu \\ 19 \\ \hline \\ \\ 10 \\ \hline \\ 10 \\ 10$	The output signal of previous stage will go through a filtering network before input to this pin. Impedance ≈ decided by the filter network. NB : Peak frequency can be changed by varying capacitor value. Gv(dB) 0dB -3dB
5, 18	Negative Feedback pin for Treble	3.40	Vref Rin S (18) Rf	Gv can be changed by varying Rin externally.
2, 21 3, 20	Negative Feedback pin & Pass filter pin	3.40	Vref Rin 21 Cf 2 3 20 Input	Cf and Rin forms a low pass filter and its cutoff frequency can be changed by varying Cf. Gv(dB) 0 dB fcut Gv can be changed by varying Rin externally.

DC Bias Pin No. Pin Name Equivalent Circuit Description Voltage Output pin for CH 1 & CH 2 6, 17 3.40 Pushpull output pin for connecting to the next stage through a coupling Vref Vcc capacitor. Zout $\approx 75\Omega$ Input O 6 17 77 Analog Switch 2.45 7 8 9 10 11 Switch pin for Rock, Pops, Jazz, Classic & Flat with initial mode set at flat mode. OVcc or 0 Each pin has a LED indicator internally. Selected mode has a bias of 2.45V & other pins have a bias of 0V. 12 GND 0 13 Vcc 6.00 14 5.00 To connect with a capacitor to Ripple Rejection minimize ripple generated from Vcc Vcc source. 10k 1k \cap 13k 22μ Z

Pin Descriptions (Continue)

6932852 0013985 589 🔳

Pin No.	Pin Name	DC Bias Voltage	Equivalent Circuit	Description
15	Mute T	1.60	$C_{sd} \xrightarrow{+}_{777} 15$	To connect with a capacitor to mute pop noise. The time constant of the mute pulse may be changed by varying Csd.
16	Reference Voltage	3.40	Bias Bias Cref 47µ 777 16	Provide a fixed DC bias, which is slightly above 1/2 Vcc to allow for bigger dynamic range.

Pin Descriptions (Continue)

367

AN7338K

Supplementary Explanation

Application Notes

• Preset Graphic Equaliser

This IC provides 5 preset modes by means of 5 push button switches, with built-in LED indicator. The boosting frequencies are 100Hz and 7kHz.

A) Rock

By pressing this switch, both 100Hz and 7kHz signal are boosted by 8dB.

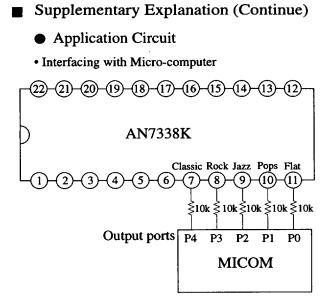
B) Pops

This preset mode will boost 100Hz signal by 4dB and 7kHz signal by 8dB.

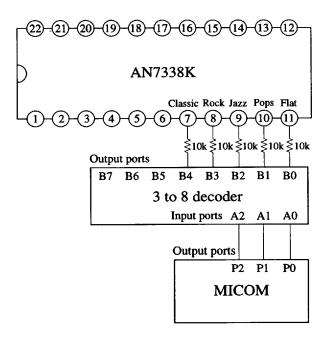
C) Flat

This is the initial preset mode, ie. when Vcc is turn ON, this mode will be ON automatically. There is a built-in buffer for this mode to pass the signal directly to output without processing.

D) Classic


This mode will boost both 100Hz and 7kHz signal by 4dB.

E) Jazz

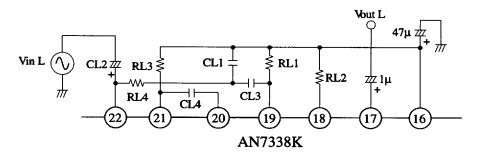

This preset mode will boost 100Hz signal by 8dB and 7kHz signal by 4dB.

Freq. Mode	100Hz	7kHz	Response Curve
ROCK	+8dB	+8dB	8
POPS	+4dB	+8dB	
FLAT	-	-	0
CLASSIC	+4dB	4dB	
JAZZ	+8dB	+4dB	

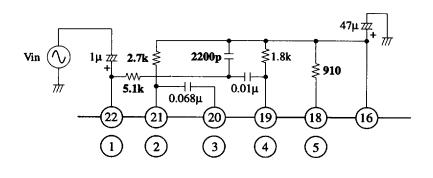
Frequency Response curve

N	лісо	DM	SELECTED		
P4	P3	P2	P1	P 0	MODE
L	L	L	L	н	FLAT
L	L	L	н	L	POPS
L	L	н	L	L	JAZZ
L	н	L	L	L	ROCK
н	L	L	L	L	CLASSIC

міс	юм	O/P	Ι	DEC	ODE	SELECTED		
P2	Pl	P0	B4	B 3	B 2	B 1	B0	MODE
L	L	L	L	L	L	L	Н	FLAT
L	L	н	L	L	L	L	L	POPS
L	Н	L	L	L	Н	L	L	JAZZ
L	Н	Н	L	н	L	н	L	ROCK
н	L	L	Н	L	L	L	L	CLASSIC


Supplementary Explanation (Continue)

Application Notes


 This IC has two peak frequencies (100Hz & 7kHz) which can be adjusted by varying external component value.
Below is a table of Gain, frequency shift vs external component value.

	Peak Frequency (100Hz)		Peak Frequency (7kHz)		Low Frequency Gain		High Frequency Gain	
	Increase	Decrease	Increase	Decrease	Increase	Decrease	Increase	Decrease
RL1			ł	†			↑	¥
RL2							¥	†
RL3					ŧ	t		
RL4			¥	t			¥	†
CL1			¥	†			¥	t
CL2					t	¥		
CL3			¥	†			t	ŧ
CL4	ł	↑						

↑ Increase component value and ↓ Decrease component value

2. If the previous stage has high output impedance (Zout), this may cause the output drop at high frequency. In this situation, the following circuit is recommended to improve the high frequency performance.

🖬 6932852 0013989 124 🖿