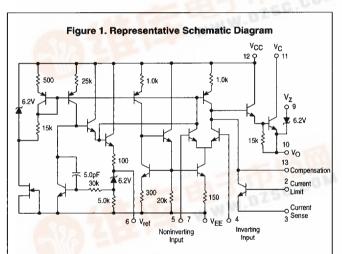
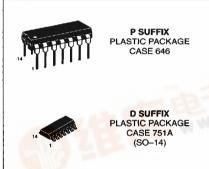
加急出货

MC1723C

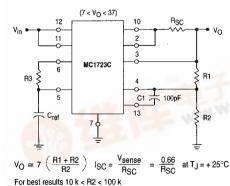

Voltage Regulator


The MC1723C is a positive or negative voltage regulator designed to deliver load current to 150 mAdo. Output current capability can be increased to several amperes through use of one or more external pass transistors. MC1723C is specified for operation over the commercial temperature range $(0^{\circ} \text{ to } +70^{\circ}\text{C})$.

- Output Voltage Adjustable from 2.0 Vdc to 37 Vdc
- Output Current to 150 mAdc Without External Pass Transistors
- 0.01% Line and 0.03% Load Regulation
- Adjustable Short Circuit Protection

VOLTAGE REGULATOR

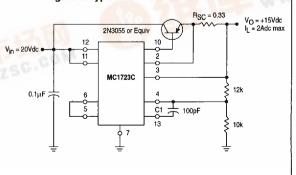
SEMICONDUCTOR TECHNICAL DATA



ORDERING INFORMATION

Device	Alternate	Operating Temperature Range	Package
MC1723CD	-		SO-14
MC1723CP	LM723CN μΑ723PC	T _A = 0° to +70°C	Plastic DIP

Figure 2. Typical Circuit Connection



For minimum drift B3 = B1 | 1 B2

zsc.com

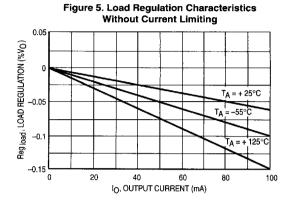
-162

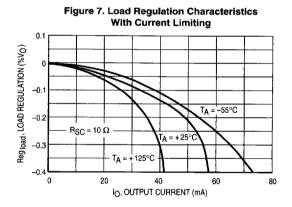
Figure 3. Typical NPN Current Boost Connection

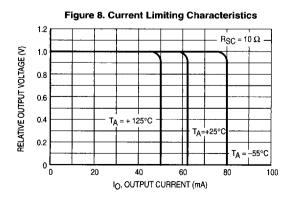
MAXIMUM RATINGS (T_A = +25°C, unless otherwise noted.)

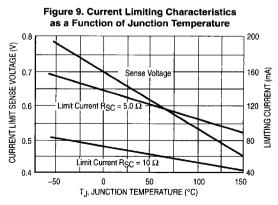
Rating	Symbol	Value	Unit	
Pulse Voltage from V _{CC} to V _{EE} (50 ms)	V _{I(p)}	50	V _{pk}	
Continuous Voltage from V _{CC} to V _{EE}	VI	40	Vdc	
Input-Output Voltage Differential	V _I –V _O	40	Vdc	
Maximum Output Current	ΙL	150	mAdc	
Current from V _{ref}	l _{ref}	15	mAdc	
Current from V _Z	Iz	25	mA	
Voltage Between Noninverting Input and VEE	V _{ie}	8.0	Vdc	
Differential Input Voltage	V _{id}	±5.0	Vdc	
Power Dissipation and Thermal Characteristics T _A = +25°C Derate above T _A = +25°C Thermal Resistance, Junction-to-Air	P _D 1/θ _J Α θJΑ	1.25 10 100	W mW/°C °C/W	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +175	°C	
Operating Ambient Temperature Range	TA	0 to +70	°C	

ELECTRICAL CHARACTERISTICS (T_A = +25°C, V_{in} 12 Vdc, V_O = 5.0 Vdc, I_L = 1.0 mAdc, R_{SC} = 0, C1 = 100 pF, C_{ref} = 0 and divider impedance as seen by the error amplifier \leq 10 kΩ connected as shown in Figure 2, unless otherwise noted.)


Characteristics	Symbol	Min	Тур	Max	Unit
Input Voltage Range	ı,v	9.5	-	40	Vdc
Output Voltage Range	v _o	2.0	-	37	Vdc
Input-Output Voltage Differential	V _I –V _O	3.0	-	38	Vdc
Reference Voltage	V _{ref}	6.80	7.15	7.50	Vdc
Standby Current Drain (I _L = 0, V _{in} = 30 V)	I _{IB}		2.3	4.0	mAdc
Output Noise Voltage (f = 100 Hz to 10 kHz) C_{ref} = 0 C_{ref} = 5.0 μF	V _n	_ _ _	20 2.5		μV(RMS)
Average Temperature Coefficient of Output Voltage (T _{Iow} < T _A < T _{high})	TCVO	-	0.003	0.015	%/°C
$ \begin{aligned} &\text{Line Regulation} \\ & & (T_A = 25^{\circ}\text{C}) \left\{ \begin{array}{l} 12 \text{ V} < \text{V}_{in} < 15 \text{ V} \\ 12 \text{ V} < \text{V}_{in} < 40 \text{ V} \end{array} \right. \\ & & (T_{low} < T_A < T_{high}) \\ & & 12 \text{ V} < \text{V}_{in} < 15 \text{ V} \end{aligned} $	Reg _{line}	- -	0.01 0.1	0.1 0.5 0.3	% V _O
Load Regulation (1.0 mA < I _L < 50 mA) $T_{A} = 25^{\circ}C$ $T_{low} < T_{A} < T_{high}$	Regload	_ _ _	0.03	0.2 0.6	% VO
Ripple Rejection (f = 50 Hz to 10 kHz) $C_{\text{ref}} = 0$ $C_{\text{ref}} = 5.0 \ \mu\text{F}$	RR	<u>-</u>	74 86		dB
Short Circuit Current Limit ($R_{SC} = 10 \Omega$, $V_O = 0$)	¹ sc	_	65	_	mAdc
Long Term Stability	^V _O /^t	_	0.1	_	%/1000 Hr.


NOTE: T_{low} to T_{high} = 0° to +70°C


Figure 4. Maximum Load Current as a Function of Input–Output Voltage Differential


200

To provide the state of the state

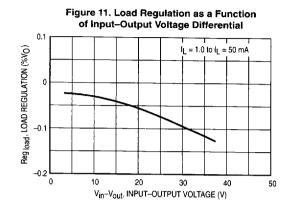
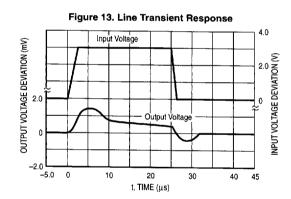
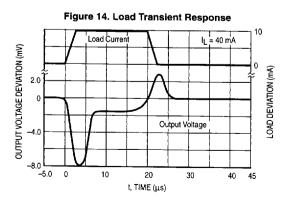




Figure 12. Standby Current Drain as a **Function of Input Voltage** 4.0 Vo = Vref IL = 0 $T_A = -55$ °C STANDBY CURRENT (mA) 3.0 2.0 T_A = +25°C 1.0 T_A = +125°C n 10 40 Vin, INPUT VOLTAGE (V)

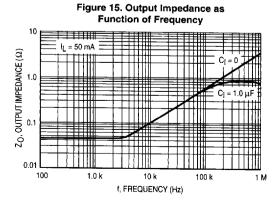
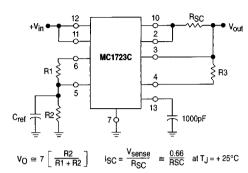



Figure 16. Typical Connection for 2 < VO < 7

For best results 10 k < R1 +R2 < 100 k For minimum drift R3 = R1 R2

Figure 17. Foldback Connection

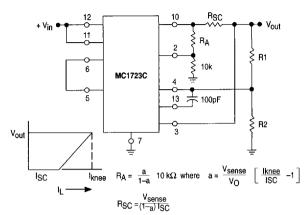


Figure 18. +5.0 V, 1.0 A Switching Regulator

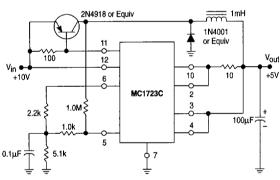


Figure 19. +5.0 V, 1.0 A High Efficiency Regulator

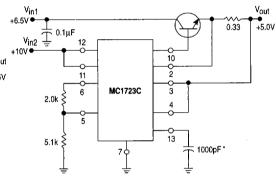


Figure 20. +15 V, 1.0 A Regulator with Remote Sense

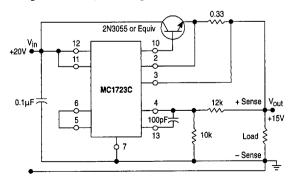
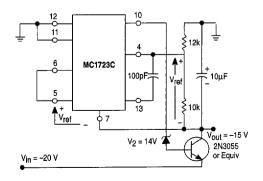
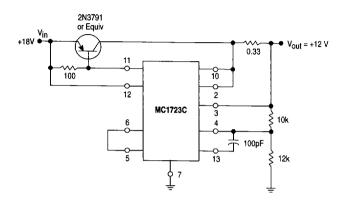




Figure 21. -15 V Negative Regulator

Figure 22. +12V, 1.0 A Regulator (Using PNP Current Boost)

